Maths-
General
Easy

Question

The range of the function  f left parenthesis x right parenthesis equals square root of left parenthesis x minus 1 right parenthesis left parenthesis 3 minus x right parenthesis end root text  is  end text

  1. left square bracket 0 comma 1 right square bracket
  2. left parenthesis negative 1 comma 1 right parenthesis
  3. left parenthesis negative 3 comma 3 right parenthesis
  4. left parenthesis negative 3 comma 1 right parenthesis

hintHint:

Here we have to find the range of f(x)= square root of open parentheses x minus 1 close parentheses open parentheses 3 minus x close parentheses end root. Just solve the function and find the solution then find the range for the function.

The correct answer is: left square bracket 0 comma 1 right square bracket


    Here we have to find that the range of square root of open parentheses x minus 1 close parentheses open parentheses 3 minus x close parentheses end root
    f (x) = square root of open parentheses x minus 1 close parentheses open parentheses 3 minus x close parentheses end root
    = square root of negative x 2 plus 4 x minus 3 end root
    =square root of negative x 2 plus 4 x minus 4 plus 1 end root
    = square root of 1 minus open parentheses x minus 2 close parentheses 2 end root
    The maximum value of f (x) is 1,
    when (x – 2) = 0.
    So, we can write Fmax= 1
    Now,
    It is minimum when,
    (x – 2)2 = 1
    (x – 2) = ± 1 [ since, x = √a2, then x = ± a]
    At, positive, x -2 = 1 => x = 3
    And at negative, x -2 = -1 => x = 1,
    Therefore, x = 3, x = 1
    So, Minimum = square root of 1 – 1 = 0
    Therefore, the Range = [0, 1].

    In this question, we have to find the range of f(x)=square root of open parentheses x minus 1 close parentheses open parentheses 3 minus x close parentheses end root. Here solve the function and find when function is at maximum and minimum.

    Related Questions to study

    General
    maths-

    The range of the function  sin invisible function application open parentheses sin to the power of negative 1 end exponent invisible function application x plus cos to the power of negative 1 end exponent invisible function application x close parentheses comma vertical line x vertical line less or equal than 1 text  is  end text

    The range of the function  sin invisible function application open parentheses sin to the power of negative 1 end exponent invisible function application x plus cos to the power of negative 1 end exponent invisible function application x close parentheses comma vertical line x vertical line less or equal than 1 text  is  end text

    maths-General
    General
    maths-

    The domain of the function f left parenthesis x right parenthesis equals log subscript e invisible function application left parenthesis x minus left square bracket x right square bracket right parenthesis text  is  end text

    The domain of the function f left parenthesis x right parenthesis equals log subscript e invisible function application left parenthesis x minus left square bracket x right square bracket right parenthesis text  is  end text

    maths-General
    General
    maths-

    If n element of N , and the period of fraction numerator cos invisible function application n x over denominator sin invisible function application open parentheses x over n close parentheses end fraction is 4 pi , then n is equal to

    If n element of N , and the period of fraction numerator cos invisible function application n x over denominator sin invisible function application open parentheses x over n close parentheses end fraction is 4 pi , then n is equal to

    maths-General
    parallel
    General
    maths-

    Domain of definition of the function f left parenthesis x right parenthesis equals fraction numerator 3 over denominator 4 minus x squared end fraction plus log subscript 10 invisible function application open parentheses x cubed minus x close parentheses comma text  is  end text

    Domain of definition of the function f left parenthesis x right parenthesis equals fraction numerator 3 over denominator 4 minus x squared end fraction plus log subscript 10 invisible function application open parentheses x cubed minus x close parentheses comma text  is  end text

    maths-General
    General
    maths-

    text  If  end text f left parenthesis x right parenthesis equals open parentheses fraction numerator x over denominator 1 minus vertical line x vertical line end fraction close parentheses to the power of 1 divided by 2002 end exponent comma text  then  end text D subscript f text  is  end text

    text  If  end text f left parenthesis x right parenthesis equals open parentheses fraction numerator x over denominator 1 minus vertical line x vertical line end fraction close parentheses to the power of 1 divided by 2002 end exponent comma text  then  end text D subscript f text  is  end text

    maths-General
    General
    maths-

    Range of the function f left parenthesis x right parenthesis equals fraction numerator x squared plus x plus 2 over denominator x squared plus x plus 1 end fraction semicolon x element of R text  is  end text

    Range of the function f left parenthesis x right parenthesis equals fraction numerator x squared plus x plus 2 over denominator x squared plus x plus 1 end fraction semicolon x element of R text  is  end text

    maths-General
    parallel
    General
    maths-

    Range of the function f left parenthesis x right parenthesis equals fraction numerator x squared plus x plus 2 over denominator x squared plus x plus 1 end fraction semicolon x element of R text  is  end text

    Range of the function f left parenthesis x right parenthesis equals fraction numerator x squared plus x plus 2 over denominator x squared plus x plus 1 end fraction semicolon x element of R text  is  end text

    maths-General
    General
    maths-

    The domain of  sin to the power of negative 1 end exponent invisible function application open parentheses log subscript 3 invisible function application x close parentheses text  is  end text

    The domain of  sin to the power of negative 1 end exponent invisible function application open parentheses log subscript 3 invisible function application x close parentheses text  is  end text

    maths-General
    General
    maths-

    The domain of the function  f left parenthesis x right parenthesis equals log subscript 3 plus x end subscript invisible function application open parentheses x squared minus 1 close parentheses text  is  end text

    The domain of the function  f left parenthesis x right parenthesis equals log subscript 3 plus x end subscript invisible function application open parentheses x squared minus 1 close parentheses text  is  end text

    maths-General
    parallel
    General
    Maths-

    If f left parenthesis x right parenthesis equals 2 x to the power of 6 plus 3 x to the power of 4 plus 4 x squared , then f to the power of straight prime left parenthesis x right parenthesis is

    Differentiation is the process of determining a function's derivative. The derivative is the rate at which x changes in relation to y when x and y are two variables. A constant function has zero derivatives. For instance, f'(x) = 0 if f(x) = 8. So the derivative function is odd.

    If f left parenthesis x right parenthesis equals 2 x to the power of 6 plus 3 x to the power of 4 plus 4 x squared , then f to the power of straight prime left parenthesis x right parenthesis is

    Maths-General

    Differentiation is the process of determining a function's derivative. The derivative is the rate at which x changes in relation to y when x and y are two variables. A constant function has zero derivatives. For instance, f'(x) = 0 if f(x) = 8. So the derivative function is odd.

    General
    maths-

    The domain of the function f left parenthesis x right parenthesis equals log subscript 2 invisible function application open parentheses log subscript 3 invisible function application open parentheses log subscript 4 invisible function application x close parentheses close parentheses is

    The domain of the function f left parenthesis x right parenthesis equals log subscript 2 invisible function application open parentheses log subscript 3 invisible function application open parentheses log subscript 4 invisible function application x close parentheses close parentheses is

    maths-General
    General
    maths-

    text  If  end text f left parenthesis x right parenthesis equals fraction numerator 1 over denominator square root of vertical line x vertical line minus x end root end fraction text  then, domain of  end text f left parenthesis x right parenthesis text  is  end text

    text  If  end text f left parenthesis x right parenthesis equals fraction numerator 1 over denominator square root of vertical line x vertical line minus x end root end fraction text  then, domain of  end text f left parenthesis x right parenthesis text  is  end text

    maths-General
    parallel
    General
    maths-

    The domain of the function f left parenthesis x right parenthesis equals exp invisible function application open parentheses square root of 5 x minus 3 minus 2 x squared end root close parentheses is

    The domain of the function f left parenthesis x right parenthesis equals exp invisible function application open parentheses square root of 5 x minus 3 minus 2 x squared end root close parentheses is

    maths-General
    General
    maths-

    The value of  tan invisible function application open curly brackets cos to the power of negative 1 end exponent invisible function application open parentheses negative 2 over 7 close parentheses minus pi over 2 close curly brackets is

    The value of  tan invisible function application open curly brackets cos to the power of negative 1 end exponent invisible function application open parentheses negative 2 over 7 close parentheses minus pi over 2 close curly brackets is

    maths-General
    General
    maths-

    sin invisible function application open parentheses 1 half cos to the power of negative 1 end exponent invisible function application 4 over 5 close parentheses is equal to

    sin invisible function application open parentheses 1 half cos to the power of negative 1 end exponent invisible function application 4 over 5 close parentheses is equal to

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.