Maths-
General
Easy

Question

Total number of divisors of 480, that are of the form 4n + 2, n greater or equal than 0, is equal to :

  1. 2    
  2. 3    
  3. 4    
  4. None of these    

hintHint:

In order to solve this question, we should know that the number of the divisor of any number x equals a to the power of m b to the power of n c to the power of p.... space space where a, b, c are prime numbers and is given by (m + 1) (n + 1) (p + 1)….. By using this property we can find the solution of this question.

The correct answer is: 4


    Detailed Solution
    In this question, we have been asked to find the total number of divisors of 480 which are of the form 4n + 2, n greater or equal than 0 space.
    o solve this question, we should know that the total number of divisors of any number x of the form a to the power of m b to the power of n c to the power of p.... space space where a, b, c … are prime numbers and is given by (m + 1) (n + 1) (p + 1)….. we know that 480 can be expressed as
    480 equals 2 to the power of 5.3.5
    So, according to the formula, the total number of divisors of 480 are (5 + 1) (1 + 1) (1 + 1) = space 6 cross times 2 cross times 2 equals 24 space.
    Now, we have been asked to find the number of divisors which are of the form 4n + 2 = 2 (2n + 1), which means odd divisors cannot be a part of the solution. So, the total number of odd divisors that are possible are (1 + 1) (1 + 1)  space equals space 2 cross times 2 equals 4 space comma according to the property.
    Now, we can say the total number of even divisors are = all divisors – odd divisor
    = 24 – 4
    = 20
    Now, we have been given that the divisor should be of 4n + 2, which means they should not be a multiple of 4 but multiple of 2. For that, we will subtract the multiple of 4 which are divisor of 480 from the even divisors.
    And, we know that,480 equals 2 to the power of 5.3.5
    So, the number of divisors that are multiples of 4 are (3 + 1) (1 + 1) (1 + 1) equals space 4 cross times 2 cross times 2 space space equals space 16.
    Hence, we can say that there are 16 divisors of 480 which are multiple of 4.
    So, the total number of divisors which are even but not divisible by 2 can be given by 20 – 16 = 4.
    Hence, we can say that there are 4 divisors of 480 that are of 4n + 2 form, space n greater or equal than 0 space.

    We can also solve this question by writing 4n + 2 = 2(2n + 1) where 2n + 1 is always an odd number. So, when all odd divisors will be multiplied by 2, we will get the divisors that we require. Hence, we can say a number of divisors of 4n + 2 form is the same as the number of odd divisors for 480.

    Related Questions to study

    General
    Maths-

    If 9P5 + 5 9P4 = 10Pr , then r =

    If 9P5 + 5 9P4 = 10Pr , then r =

    Maths-General
    General
    Maths-

    The number of proper divisors of 2 to the power of p. 6 to the power of q. 15r is-

    The number of proper divisors of 2 to the power of p. 6 to the power of q. 15r is-

    Maths-General
    General
    Maths-

    Ifx squared minus 11 x plus a text  and  end text x squared minus 14 x plus 2 a have a common factor then 'a' is equal to

    Ifx squared minus 11 x plus a text  and  end text x squared minus 14 x plus 2 a have a common factor then 'a' is equal to

    Maths-General
    parallel
    General
    physics-

    A block C of mass is moving with velocity and collides elastically with block of mass  and connected to another block of mass  through spring constant .What is  if  is compression of spring when velocity of  is same ?

    A block C of mass is moving with velocity and collides elastically with block of mass  and connected to another block of mass  through spring constant .What is  if  is compression of spring when velocity of  is same ?

    physics-General
    General
    Maths-

    If fraction numerator 1 over denominator left parenthesis 1 plus 2 x right parenthesis open parentheses 1 minus x squared close parentheses end fraction equals fraction numerator A over denominator 1 plus 2 x end fraction plus fraction numerator B over denominator 1 plus x end fraction plus fraction numerator C over denominator 1 minus x end fraction then ascending order of A, B, C.

    If fraction numerator 1 over denominator left parenthesis 1 plus 2 x right parenthesis open parentheses 1 minus x squared close parentheses end fraction equals fraction numerator A over denominator 1 plus 2 x end fraction plus fraction numerator B over denominator 1 plus x end fraction plus fraction numerator C over denominator 1 minus x end fraction then ascending order of A, B, C.

    Maths-General
    General
    Maths-

    The number of different seven digit numbers that can be written using only the three digits 1, 2 and 3 with the condition that the digit 2 occurs twice in each number is-

    We know that there is not much difference between permutation and combination. Permutation is the way or method of arranging numbers from a given set of numbers such that the order of arrangement matters. Whereas combination is the way of selecting items from a given set of items where order of selection doesn’t matter. Both the word combination and permutation is the way of arrangement. Here, we will not use permutation because the order of toys is not necessary.

    The number of different seven digit numbers that can be written using only the three digits 1, 2 and 3 with the condition that the digit 2 occurs twice in each number is-

    Maths-General

    We know that there is not much difference between permutation and combination. Permutation is the way or method of arranging numbers from a given set of numbers such that the order of arrangement matters. Whereas combination is the way of selecting items from a given set of items where order of selection doesn’t matter. Both the word combination and permutation is the way of arrangement. Here, we will not use permutation because the order of toys is not necessary.

    parallel
    General
    Maths-

    The centre and radius of the circle r equals c o s space theta minus s i n space theta are respectively

    The centre and radius of the circle r equals c o s space theta minus s i n space theta are respectively

    Maths-General
    General
    maths-

    The centre of the circle r squared minus 2 r left parenthesis 3 c o s space theta plus 4 s i n space theta right parenthesis minus 24 is

    The centre of the circle r squared minus 2 r left parenthesis 3 c o s space theta plus 4 s i n space theta right parenthesis minus 24 is

    maths-General
    General
    maths-

    The equation of the circle with centre at open parentheses 1 comma 0 to the power of 0 end exponent close parentheses, which passes through the point open parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses is

    The equation of the circle with centre at open parentheses 1 comma 0 to the power of 0 end exponent close parentheses, which passes through the point open parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses is

    maths-General
    parallel
    General
    maths-

    The foot of the perpendicular from left parenthesis negative 1 comma pi divided by 6 right parenthesis on the line r left parenthesis 3 s i n space theta plus square root of 3 c o s space theta right parenthesis equals 3 is

    The foot of the perpendicular from left parenthesis negative 1 comma pi divided by 6 right parenthesis on the line r left parenthesis 3 s i n space theta plus square root of 3 c o s space theta right parenthesis equals 3 is

    maths-General
    General
    maths-

    The foot of the perpendicular from the pole on the line r left parenthesis c o s space theta plus square root of 3 s i n space theta right parenthesis equals 2 is

    The foot of the perpendicular from the pole on the line r left parenthesis c o s space theta plus square root of 3 s i n space theta right parenthesis equals 2 is

    maths-General
    General
    maths-

    The equation of the line parallel to r left square bracket 3 C o s space theta plus 2 S i n space theta right square bracket equals 5 and passing through open parentheses 2 comma fraction numerator pi over denominator 2 end fraction close parentheses is

    The equation of the line parallel to r left square bracket 3 C o s space theta plus 2 S i n space theta right square bracket equals 5 and passing through open parentheses 2 comma fraction numerator pi over denominator 2 end fraction close parentheses is

    maths-General
    parallel
    General
    Maths-

    The line passing through the points open parentheses 2 comma fraction numerator pi over denominator 2 end fraction close parentheses, (3,0) is

    So here we used the concept of the equation of the line passing through two points. Here we also used the trigonometric terms to find the answer using the formulas. So the final solution is r left square bracket 3 s i n space theta plus 2 C o s space theta right square bracket equals negative 6.

    The line passing through the points open parentheses 2 comma fraction numerator pi over denominator 2 end fraction close parentheses, (3,0) is

    Maths-General

    So here we used the concept of the equation of the line passing through two points. Here we also used the trigonometric terms to find the answer using the formulas. So the final solution is r left square bracket 3 s i n space theta plus 2 C o s space theta right square bracket equals negative 6.

    General
    Maths-

    Statement-I : If fraction numerator 3 x plus 4 over denominator left parenthesis x plus 1 right parenthesis squared left parenthesis x minus 1 right parenthesis end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B over denominator x plus 1 end fraction plus fraction numerator C over denominator left parenthesis x plus 1 right parenthesis squared end fraction then A=7 over 4
    Statement-II : If fraction numerator p x plus q over denominator left parenthesis 2 x minus 3 right parenthesis squared end fraction equals fraction numerator 1 over denominator 2 x minus 3 end fraction plus fraction numerator 3 over denominator left parenthesis 2 x minus 3 right parenthesis squared end fraction then p equals 2 comma q equals 3

    Which of the above statements is true

    Statement-I : If fraction numerator 3 x plus 4 over denominator left parenthesis x plus 1 right parenthesis squared left parenthesis x minus 1 right parenthesis end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B over denominator x plus 1 end fraction plus fraction numerator C over denominator left parenthesis x plus 1 right parenthesis squared end fraction then A=7 over 4
    Statement-II : If fraction numerator p x plus q over denominator left parenthesis 2 x minus 3 right parenthesis squared end fraction equals fraction numerator 1 over denominator 2 x minus 3 end fraction plus fraction numerator 3 over denominator left parenthesis 2 x minus 3 right parenthesis squared end fraction then p equals 2 comma q equals 3

    Which of the above statements is true

    Maths-General
    General
    Maths-

    If b > a , then the equation, (x - a) (x - b) - 1 = 0, has:

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, one of the roots will be in the interval of (α,a) and the other root will be in the interval (b,α).

    If b > a , then the equation, (x - a) (x - b) - 1 = 0, has:

    Maths-General

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, one of the roots will be in the interval of (α,a) and the other root will be in the interval (b,α).

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.