Physics
Grade-10
Easy
Question
A bar magnet is equivalent to:
- A charged particle in motion
- A solenoid carrying current
- A straight conductor carrying current
- A circular coil carrying current
Hint:
Both a bar magnet and current carrying solenoid produce similar magnetic lines of force
The correct answer is: A solenoid carrying current
- Both a bar magnet and current carrying solenoid produce similar magnetic lines of force around them in closed loop. Hence, bar magnet can be modeled equivalent to a solenoid.
Related Questions to study
Physics
The nature of magnetic field line passing through the center of current carrying circular loop is:
The nature of magnetic field line passing through the center of current carrying circular loop is:
PhysicsGrade-10
Physics
The symbol ⊗ shows that there is:
The symbol ⊗ shows that there is:
PhysicsGrade-10
Physics
On reversing the direction of current in a wire, the magnetic field produced by it:
On reversing the direction of current in a wire, the magnetic field produced by it:
PhysicsGrade-10
Physics
Which of the following should be used as the core of an electromagnet?
Which of the following should be used as the core of an electromagnet?
PhysicsGrade-10
Physics
When an electric current passes through a solenoid, it acts as a/an:
When an electric current passes through a solenoid, it acts as a/an:
PhysicsGrade-10
Physics
In a uniform magnetic field, the field lines are:
In a uniform magnetic field, the field lines are:
PhysicsGrade-10
Physics
Electromagnets are special types of magnets in which magnetism is produced by:
Electromagnets are special types of magnets in which magnetism is produced by:
PhysicsGrade-10
Physics
The observations made by Faraday from the experiments on electromagnetic induction is (are) that ___________.
I. The deflection in the galvanometer increases when a strong magnet is used.
II. The induced current in the coil is alternating in nature.
The observations made by Faraday from the experiments on electromagnetic induction is (are) that ___________.
I. The deflection in the galvanometer increases when a strong magnet is used.
II. The induced current in the coil is alternating in nature.
PhysicsGrade-10
Physics
Two identical coaxial circular loops carry a current “I” each, circulating in the same direction. If the loops approach each other, what will you observe?
Two identical coaxial circular loops carry a current “I” each, circulating in the same direction. If the loops approach each other, what will you observe?
PhysicsGrade-10
Physics
Which one of the following can produce maximum induced emf?
Which one of the following can produce maximum induced emf?
PhysicsGrade-10
Physics
A coil of insulated copper wire is connected to a galvanometer forming a loop and a magnet is:
I: Held stationary
II: Moved away along its axis
III: Moved towards along its axis
There will be an induced current in:
A coil of insulated copper wire is connected to a galvanometer forming a loop and a magnet is:
I: Held stationary
II: Moved away along its axis
III: Moved towards along its axis
There will be an induced current in:
PhysicsGrade-10
Physics
The emf produced in a wire by its motion across a magnetic field does not depend upon :
The emf produced in a wire by its motion across a magnetic field does not depend upon :
PhysicsGrade-10
Physics
An induced emf is produced when a magnet is moved into a coil. The magnitude of induced emf does not depend on:
An induced emf is produced when a magnet is moved into a coil. The magnitude of induced emf does not depend on:
PhysicsGrade-10
Physics
The magnitude of the induced e.m.f. in a conductor depends on the:
The magnitude of the induced e.m.f. in a conductor depends on the:
PhysicsGrade-10
Physics
The condition for the phenomenon of electromagnetic induction is that there must be a relative motion between:
The condition for the phenomenon of electromagnetic induction is that there must be a relative motion between:
PhysicsGrade-10