Physics-
General
Easy
Question
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The maximum height h attained by the particle is
-
-
-
- none of these
The correct answer is:
Related Questions to study
Physics-
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The final velocity of the wedge v2 is
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The final velocity of the wedge v2 is
Physics-General
Physics-
A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is 0 when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord after it has turned through an angle is
A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is 0 when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord after it has turned through an angle is
Physics-General
Physics-
A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?
A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?
Physics-General
Physics-
Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
The minimum value of between the block M and m0 (taking horizontal surface frictionless) for which all the three blocks move together, is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
The minimum value of between the block M and m0 (taking horizontal surface frictionless) for which all the three blocks move together, is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If friction force exists between the block M and the block m0 and not between the block M and the horizontal surface, then the minimum value of for which the block m remains stationary is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If friction force exists between the block M and the block m0 and not between the block M and the horizontal surface, then the minimum value of for which the block m remains stationary is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If m0 be the coefficient of friction between the block M and the horizontal surface then the minimum value of m0 required to keep the block m stationary is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If m0 be the coefficient of friction between the block M and the horizontal surface then the minimum value of m0 required to keep the block m stationary is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
In previous problem, the tension in the string will be
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
In previous problem, the tension in the string will be
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If < min (the minimum friction required to keep the block m stationary), then the downward acceleration of m is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If < min (the minimum friction required to keep the block m stationary), then the downward acceleration of m is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
The minimum value of for which the block m remains stationary is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
The minimum value of for which the block m remains stationary is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If there is no friction between any two surfaces, then
If a friction force exist between block M and the horizontal surface with the coefficient of friction .
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If there is no friction between any two surfaces, then
If a friction force exist between block M and the horizontal surface with the coefficient of friction .
Physics-General
Physics-
A man balances himself in a horizontal position by pushing his hands and feet against two parallel walls. His centre of mass lies midway between the walls. The coefficients of friction at the walls are equal. Which of the following is not correct?
A man balances himself in a horizontal position by pushing his hands and feet against two parallel walls. His centre of mass lies midway between the walls. The coefficients of friction at the walls are equal. Which of the following is not correct?
Physics-General
Physics-
The coefficient of friction between 4kg and 5 kg blocks is 0.2 and between 5kg block and ground is 0.1 respectively. Choose the correct statements
The coefficient of friction between 4kg and 5 kg blocks is 0.2 and between 5kg block and ground is 0.1 respectively. Choose the correct statements
Physics-General
Physics-
Adjoining figure shows a force of 40 N acting at 30° to the horizontal on a body of mass 5 kg resting on a smooth horizontal surface. Assuming that the acceleration of free–fall is 10 ms–2, which of the following statements A, B, C, D, E is (are) correct? [1] The horizontal force acting on the body is 20 N [2] The weight of the 5 kg mass acts vertically downwards [3] The net vertical force acting on the body is 30 N
Adjoining figure shows a force of 40 N acting at 30° to the horizontal on a body of mass 5 kg resting on a smooth horizontal surface. Assuming that the acceleration of free–fall is 10 ms–2, which of the following statements A, B, C, D, E is (are) correct? [1] The horizontal force acting on the body is 20 N [2] The weight of the 5 kg mass acts vertically downwards [3] The net vertical force acting on the body is 30 N
Physics-General
Physics-
A student calculates the acceleration of m1 in figure shown as Which assumption is not required to do this calculation.
A student calculates the acceleration of m1 in figure shown as Which assumption is not required to do this calculation.
Physics-General