Physics
Mechanics
Easy

Question

A satellite is seen after each 8 hours over equator at a place on the earth when its sense of rotation is opposite to the earth. The time interval after which it can be seen at the same place when the sense of rotation of earth and satellite is same will be :

  1. 8 hours
  2. 12 hours
  3. 24 hours
  4. 6 hours

The correct answer is: 24 hours


    text  Given  end text 8 equals fraction numerator 2 pi over denominator omega subscript 1 plus omega subscript 2 end fraction equals fraction numerator 2 pi over denominator fraction numerator 2 pi over denominator T subscript 1 end fraction plus fraction numerator 2 pi over denominator T subscript 2 end fraction end fraction comma T subscript 1 equals 24 text  hours for earth.  end text
not stretchy rightwards double arrow T equals fraction numerator 2 pi over denominator omega subscript 2 minus omega subscript 1 end fraction equals fraction numerator 2 pi over denominator fraction numerator 2 pi over denominator T subscript 2 end fraction minus fraction numerator 2 pi over denominator T subscript 1 end fraction end fraction equals 24 text  hours  end text

    Related Questions to study

    Mechanics
    Physics

    A satellite is seen after every 6 hours over the equator. It is known that it rotates opposite to that of earth's direction. Then the angular velocity (in radians per hour) of the satellite about the centre of earth will be:

    A satellite is seen after every 6 hours over the equator. It is known that it rotates opposite to that of earth's direction. Then the angular velocity (in radians per hour) of the satellite about the centre of earth will be:

    PhysicsMechanics
    Mechanics
    Physics

    text  The correct graph representing the variation of total energy  end text open parentheses E subscript t close parentheses comma text  kinetic energy  end text open parentheses E subscript k close parentheses text  and  end text
p o t e n t i a l space e n e r g y space left parenthesis U right parenthesis space o f space a space s a t e l l i t e space w i t h space i t s space d i s tan c e space f r o m space t h e space c e n t r e space o f space e a r t h space i s

    text  The correct graph representing the variation of total energy  end text open parentheses E subscript t close parentheses comma text  kinetic energy  end text open parentheses E subscript k close parentheses text  and  end text
p o t e n t i a l space e n e r g y space left parenthesis U right parenthesis space o f space a space s a t e l l i t e space w i t h space i t s space d i s tan c e space f r o m space t h e space c e n t r e space o f space e a r t h space i s

    PhysicsMechanics
    Mechanics
    Physics

    The mean radius of the earth is R, its angular speed on its own axis is omega and the acceleration due to gravity at earth's surface is g. The cube of the radius of the orbit of a geo-stationary satellite will be

    The mean radius of the earth is R, its angular speed on its own axis is omega and the acceleration due to gravity at earth's surface is g. The cube of the radius of the orbit of a geo-stationary satellite will be

    PhysicsMechanics
    parallel
    Mechanics
    Physics

    In a satellite if the time of revolution is T, then kinetic energy is proportional to

    In a satellite if the time of revolution is T, then kinetic energy is proportional to

    PhysicsMechanics
    Mechanics
    Physics

    The maximum and minimum distances of a from 8 cross times 10 to the power of 12 m and 1.6 cross times 10 to the power of 12 m. If its velocity the sun are when nearest to the sun is 60 m / s, what will be its velocity in m / s when it is farthest

    The maximum and minimum distances of a from 8 cross times 10 to the power of 12 m and 1.6 cross times 10 to the power of 12 m. If its velocity the sun are when nearest to the sun is 60 m / s, what will be its velocity in m / s when it is farthest

    PhysicsMechanics
    Mechanics
    Physics

    A particle of mass M is situated at the centre of a spherical shell of same mass and radius R. The gravitational potential at a point situated at 5 distance from the centre will be

    A particle of mass M is situated at the centre of a spherical shell of same mass and radius R. The gravitational potential at a point situated at 5 distance from the centre will be

    PhysicsMechanics
    parallel
    Mechanics
    Physics

    The mass of the earth is 6 cross times 10 to the power of 24 k g and that of the moon is 7.4 cross times 10 to the power of 22 k g. The potential energy of the system is negative 7.79 cross times 10 to the power of 28 J. The mean distance between the earth and moon is open parentheses G equals 6.67 cross times 10 to the power of negative 11 end exponent N m squared k g to the power of negative 2 end exponent close parentheses.

    The mass of the earth is 6 cross times 10 to the power of 24 k g and that of the moon is 7.4 cross times 10 to the power of 22 k g. The potential energy of the system is negative 7.79 cross times 10 to the power of 28 J. The mean distance between the earth and moon is open parentheses G equals 6.67 cross times 10 to the power of negative 11 end exponent N m squared k g to the power of negative 2 end exponent close parentheses.

    PhysicsMechanics
    Mechanics
    Physics

    Two spheres each of mass M and radius R are separated by a distance of r. The gravitational potential at the midpoint of the line joining the centres of the spheres is

    Two spheres each of mass M and radius R are separated by a distance of r. The gravitational potential at the midpoint of the line joining the centres of the spheres is

    PhysicsMechanics
    Mechanics
    Physics

    A particle of mass m is placed at the centre of a uniform spherical shell of mass 3 m and radius R. The gravitational potential on the surface of the shell is

    A particle of mass m is placed at the centre of a uniform spherical shell of mass 3 m and radius R. The gravitational potential on the surface of the shell is

    PhysicsMechanics
    parallel
    Mechanics
    Physics

    The change in potential energy when a body of mass m is raised to a height n RE from earth's surface is (RE. radius of the earth)

    The change in potential energy when a body of mass m is raised to a height n RE from earth's surface is (RE. radius of the earth)

    PhysicsMechanics
    Mechanics
    Physics

    Four particles each of mass m are placed at the vertices of a square of side l. The potential at the centre of square is

    Four particles each of mass m are placed at the vertices of a square of side l. The potential at the centre of square is

    PhysicsMechanics
    Mechanics
    Physics

    Four particles each of mass m are placed at the vertices of a square of side . The potential energy of the system is

    Four particles each of mass m are placed at the vertices of a square of side . The potential energy of the system is

    PhysicsMechanics
    parallel
    Mechanics
    Physics

    A body of mass m is placed on earth surface which is taken from earth surface to a height of h=3 R, then change in gravitational potential energy is

    A body of mass m is placed on earth surface which is taken from earth surface to a height of h=3 R, then change in gravitational potential energy is

    PhysicsMechanics
    Mechanics
    Physics

    Two oppositely rotating satellites of same mass are launched in the same orbit round the earth. The collide idealistically. What is the ratio of gravitational potential energy before and after collision?

    Two oppositely rotating satellites of same mass are launched in the same orbit round the earth. The collide idealistically. What is the ratio of gravitational potential energy before and after collision?

    PhysicsMechanics
    Mechanics
    Physics

    The potential energy of interaction between the semi-circular ring of mass M and radius R1 and the particle of mass M placed at the centre of curvature of the semi-circular arc is:

    The potential energy of interaction between the semi-circular ring of mass M and radius R1 and the particle of mass M placed at the centre of curvature of the semi-circular arc is:

    PhysicsMechanics
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.