Physics-
General
Easy

Question

For a moving body at any instant of time :

  1. If the body is not moving, the acceleration is necessarily zero    
  2. If the body is slowing, the retardation is negative.    
  3. If the body is slowing, the distance is negative.    
  4. If displacement, velocity and acceleration at that instant are known, we can find the displacement at any given time in future.    

The correct answer is: If displacement, velocity and acceleration at that instant are known, we can find the displacement at any given time in future.

Related Questions to study

General
Physics-

The velocity of a body depends on time according to the equation u = 20 + 0.1t2 The body is undergoing:

The velocity of a body depends on time according to the equation u = 20 + 0.1t2 The body is undergoing:

Physics-General
General
Maths-

If integral s e c to the power of fraction numerator 4 over denominator 9 end fraction end exponent invisible function application x times c o s invisible function application e to the power of fraction numerator 14 over denominator 9 end fraction end exponent x d x equals a t a n to the power of b end exponent invisible function application x plus c then a+b= ___

If integral s e c to the power of fraction numerator 4 over denominator 9 end fraction end exponent invisible function application x times c o s invisible function application e to the power of fraction numerator 14 over denominator 9 end fraction end exponent x d x equals a t a n to the power of b end exponent invisible function application x plus c then a+b= ___

Maths-General
General
Maths-

The value of constant a>0 such that stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets tan to the power of negative 1 end exponent invisible function application square root of x close square brackets d x equals stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets cot to the power of negative 1 end exponent invisible function application square root of x close square brackets d x where [.] denotes G.I.F is

The value of constant a>0 such that stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets tan to the power of negative 1 end exponent invisible function application square root of x close square brackets d x equals stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets cot to the power of negative 1 end exponent invisible function application square root of x close square brackets d x where [.] denotes G.I.F is

Maths-General
parallel
General
Maths-

Let text end text f colon R to the power of plus end exponent rightwards arrow R be a differentiable function with f left parenthesis A right parenthesis equals 3 and satisfying stretchy integral subscript 1 end subscript superscript x y end superscript   f left parenthesis t right parenthesis d t equals y stretchy integral subscript 1 end subscript superscript x end superscript   f left parenthesis t right parenthesis d t plus x stretchy integral subscript 1 end subscript superscript y end superscript   f left parenthesis t right parenthesis d t for all x comma y element of R to the power of plus end exponent comma text then  end text f left parenthesis x right parenthesis equals

Let text end text f colon R to the power of plus end exponent rightwards arrow R be a differentiable function with f left parenthesis A right parenthesis equals 3 and satisfying stretchy integral subscript 1 end subscript superscript x y end superscript   f left parenthesis t right parenthesis d t equals y stretchy integral subscript 1 end subscript superscript x end superscript   f left parenthesis t right parenthesis d t plus x stretchy integral subscript 1 end subscript superscript y end superscript   f left parenthesis t right parenthesis d t for all x comma y element of R to the power of plus end exponent comma text then  end text f left parenthesis x right parenthesis equals

Maths-General
General
Maths-

Area bounded by the curve y to the power of 2 end exponent equals x plus 4 and the line x+2y=4 is _____ sq. units

Area bounded by the curve y to the power of 2 end exponent equals x plus 4 and the line x+2y=4 is _____ sq. units

Maths-General
General
Maths-

Area of the figure contained between the parabola x to the power of 2 end exponent equals 4 y and the curve y equals fraction numerator 8 over denominator x to the power of 2 end exponent plus 4 end fraction text  is  end text 2 pi minus K then K=

Area of the figure contained between the parabola x to the power of 2 end exponent equals 4 y and the curve y equals fraction numerator 8 over denominator x to the power of 2 end exponent plus 4 end fraction text  is  end text 2 pi minus K then K=

Maths-General
parallel
General
Maths-

The area bounded by mini left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 2 text end text and m a x left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 4 text  is : end text

The area bounded by mini left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 2 text end text and m a x left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 4 text  is : end text

Maths-General
General
Maths-

f left parenthesis x right parenthesis equals stretchy integral subscript 1 end subscript superscript x end superscript   fraction numerator tan to the power of negative 1 end exponent invisible function application t over denominator t end fraction d t semicolon x greater than 0 then the value of f open parentheses e to the power of 2 end exponent close parentheses minus f open parentheses fraction numerator 1 over denominator e to the power of 2 end exponent end fraction close parentheses text  is end text

f left parenthesis x right parenthesis equals stretchy integral subscript 1 end subscript superscript x end superscript   fraction numerator tan to the power of negative 1 end exponent invisible function application t over denominator t end fraction d t semicolon x greater than 0 then the value of f open parentheses e to the power of 2 end exponent close parentheses minus f open parentheses fraction numerator 1 over denominator e to the power of 2 end exponent end fraction close parentheses text  is end text

Maths-General
General
Maths-

integral left parenthesis square root of c o t invisible function application x end root plus square root of t a n invisible function application x end root right parenthesis d x equals f left parenthesis x right parenthesis plus c text  thenf  end text left parenthesis x right parenthesis equals

integral left parenthesis square root of c o t invisible function application x end root plus square root of t a n invisible function application x end root right parenthesis d x equals f left parenthesis x right parenthesis plus c text  thenf  end text left parenthesis x right parenthesis equals

Maths-General
parallel
General
Maths-

If text end text g left parenthesis x right parenthesis equals stretchy integral subscript 0 end subscript superscript x end superscript   left parenthesis vertical line s i n invisible function application t vertical line plus vertical line c o s invisible function application t vertical line right parenthesis d t text  then  end text g open parentheses x plus fraction numerator n pi over denominator 2 end fraction close parentheses is equal to where n element of N

If text end text g left parenthesis x right parenthesis equals stretchy integral subscript 0 end subscript superscript x end superscript   left parenthesis vertical line s i n invisible function application t vertical line plus vertical line c o s invisible function application t vertical line right parenthesis d t text  then  end text g open parentheses x plus fraction numerator n pi over denominator 2 end fraction close parentheses is equal to where n element of N

Maths-General
General
Maths-

If the primitive of text end text s i n to the power of negative 3 divided by 2 end exponent invisible function application x s i n to the power of negative 1 divided by 2 end exponent invisible function application left parenthesis x plus theta right parenthesis text end text text is end text text end text minus 2 c o s e c invisible function application theta square root of f left parenthesis x right parenthesis end root plus C text end textthen

If the primitive of text end text s i n to the power of negative 3 divided by 2 end exponent invisible function application x s i n to the power of negative 1 divided by 2 end exponent invisible function application left parenthesis x plus theta right parenthesis text end text text is end text text end text minus 2 c o s e c invisible function application theta square root of f left parenthesis x right parenthesis end root plus C text end textthen

Maths-General
General
Maths-

integral fraction numerator square root of s i n to the power of 3 end exponent invisible function application 2 x end root over denominator sin to the power of 5 end exponent invisible function application x end fraction d x text  is end text

integral fraction numerator square root of s i n to the power of 3 end exponent invisible function application 2 x end root over denominator sin to the power of 5 end exponent invisible function application x end fraction d x text  is end text

Maths-General
parallel
General
Physics-

Assertion : Two similar trains are moving along the equatorial line with the same speed but in opposite direction. They will exert equal pressure on the rails.
Reason : In uniform circular motion of magnitude of acceleration remains constant but the direction continuously changed.

Assertion : Two similar trains are moving along the equatorial line with the same speed but in opposite direction. They will exert equal pressure on the rails.
Reason : In uniform circular motion of magnitude of acceleration remains constant but the direction continuously changed.

Physics-General
General
Physics-

Assertion : As the frictional force increases, the safe velocity limit for taking a turn on an unbanked road also increases.
Reason : Banking of roads will increase the value of limiting velocity.

Assertion : As the frictional force increases, the safe velocity limit for taking a turn on an unbanked road also increases.
Reason : Banking of roads will increase the value of limiting velocity.

Physics-General
General
Physics-

A ball is rolled off the edge of horizontal table at a speed of 4m/sec. It hits the ground after 0.4 second. Which statement given below is true :

A ball is rolled off the edge of horizontal table at a speed of 4m/sec. It hits the ground after 0.4 second. Which statement given below is true :

Physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.