Physics-
General
Easy
Question
For a particle executing S.H.M. the displacement x is given by . Identify the graph which represents the variation of potential energy (P.E.) as a function of time t and displacement x
- I, III
- II, IV
- II, III
- I, IV
The correct answer is: I, III
Potential energy is minimum (in this case zero) at mean position (x = 0) and maximum at extreme position
At time t = 0, x = A, hence potential should be maximum. Therefore graph I is correct. Further in graph III. Potential energy is minimum at x = 0, hence this is also correct.
Related Questions to study
Physics-
The graph shows the variation of displacement of a particle executing S.H.M. with time. We infer from this graph that
The graph shows the variation of displacement of a particle executing S.H.M. with time. We infer from this graph that
Physics-General
Physics-
The displacement time graph of a particle executing S.H.M. is as shown in the figure The corresponding force-time graph of the particle is
The displacement time graph of a particle executing S.H.M. is as shown in the figure The corresponding force-time graph of the particle is
Physics-General
Physics-
The acceleration a of a particle undergoing S.H.M. is shown in the figure. Which of the labelled points corresponds to the particle being at – xmax
The acceleration a of a particle undergoing S.H.M. is shown in the figure. Which of the labelled points corresponds to the particle being at – xmax
Physics-General
Physics-
A particle of mass m is attached to three identical springs A, B and C each of force constant k a shown in figure. If the particle of mass m is pushed slightly against the spring A and released then the time period of oscillations is
A particle of mass m is attached to three identical springs A, B and C each of force constant k a shown in figure. If the particle of mass m is pushed slightly against the spring A and released then the time period of oscillations is
Physics-General
Physics-
Three masses 700g, 500g, and 400g are suspended at the end of a spring a shown and are in equilibrium. When the 700g mass is removed, the system oscillates with a period of 3 seconds, when the 500 gm mass is also removed, it will oscillate with a period of
Three masses 700g, 500g, and 400g are suspended at the end of a spring a shown and are in equilibrium. When the 700g mass is removed, the system oscillates with a period of 3 seconds, when the 500 gm mass is also removed, it will oscillate with a period of
Physics-General
Physics-
One end of a spring of force constant k is fixed to a vertical wall and the other to a block of mass m resting on a smooth horizontal surface. There is another wall at a distance from the black. The spring is then compressed by and released. The time taken to strike the wall is
One end of a spring of force constant k is fixed to a vertical wall and the other to a block of mass m resting on a smooth horizontal surface. There is another wall at a distance from the black. The spring is then compressed by and released. The time taken to strike the wall is
Physics-General
Physics-
A disc of radius R and mass M is pivoted at the rim and is set for small oscillations. If simple pendulum has to have the same period as that of the disc, the length of the simple pendulum should be
A disc of radius R and mass M is pivoted at the rim and is set for small oscillations. If simple pendulum has to have the same period as that of the disc, the length of the simple pendulum should be
Physics-General
Physics-
Two identical balls A and B each of mass 0.1 kg are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of a circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 m. Each spring has a natural length of 0.06p m and force constant 0.1N/m. Initially both the balls are displaced by an angle radian with respect to the diameter of the circle and released from rest. The frequency of oscillation of the ball B is
Two identical balls A and B each of mass 0.1 kg are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of a circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 m. Each spring has a natural length of 0.06p m and force constant 0.1N/m. Initially both the balls are displaced by an angle radian with respect to the diameter of the circle and released from rest. The frequency of oscillation of the ball B is
Physics-General
Physics-
An ideal spring with spring-constant K is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released with the spring initially un stretched. Then the maximum extension in the spring is
An ideal spring with spring-constant K is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released with the spring initially un stretched. Then the maximum extension in the spring is
Physics-General
Physics-
The bob of a simple pendulum is displaced from its equilibrium position O to a position Q which is at height h above O and the bob is then released. Assuming the mass of the bob to be m and time period of oscillations to be 2.0 sec, the tension in the string when the bob passes through O is
The bob of a simple pendulum is displaced from its equilibrium position O to a position Q which is at height h above O and the bob is then released. Assuming the mass of the bob to be m and time period of oscillations to be 2.0 sec, the tension in the string when the bob passes through O is
Physics-General
Physics-
Two simple pendulums of length 5 m and 20 m respectively are given small linear displacement in one direction at the same time. They will again be in the phase when the pendulum of shorter length has completed .... oscillations.
Two simple pendulums of length 5 m and 20 m respectively are given small linear displacement in one direction at the same time. They will again be in the phase when the pendulum of shorter length has completed .... oscillations.
Physics-General
Physics-
A sphere of radius r is kept on a concave mirror of radius of curvature R. The arrangement is kept on a horizontal table (the surface of concave mirror is frictionless and sliding not rolling). If the sphere is displaced from its equilibrium position and left, then it executes S.H.M. The period of oscillation will be
A sphere of radius r is kept on a concave mirror of radius of curvature R. The arrangement is kept on a horizontal table (the surface of concave mirror is frictionless and sliding not rolling). If the sphere is displaced from its equilibrium position and left, then it executes S.H.M. The period of oscillation will be
Physics-General
Physics-
A cylindrical piston of mass M slides smoothly inside a long cylinder closed at one end, enclosing a certain mass of gas. The cylinder is kept with its axis horizontal. If the piston is disturbed from its equilibrium position, it oscillates simple harmonically. The period of oscillation will be
A cylindrical piston of mass M slides smoothly inside a long cylinder closed at one end, enclosing a certain mass of gas. The cylinder is kept with its axis horizontal. If the piston is disturbed from its equilibrium position, it oscillates simple harmonically. The period of oscillation will be
Physics-General
Physics-
A thin uniform rod of mass M and length L hangs from a frictionless pivot and is connected at the bottom by a spring to the wall as shown. The spring constant is K. The system is allowed to oscillate by pressing end B of the rod and releasing. The period of oscillation will be
A thin uniform rod of mass M and length L hangs from a frictionless pivot and is connected at the bottom by a spring to the wall as shown. The spring constant is K. The system is allowed to oscillate by pressing end B of the rod and releasing. The period of oscillation will be
Physics-General
Physics-
A semi cylindrical shell with negligible thickness oscillates without slipping on a horizontal surface.
The time period of small oscillations is (Hint : centre of mass of the shell lies at below the centre)
A semi cylindrical shell with negligible thickness oscillates without slipping on a horizontal surface.
The time period of small oscillations is (Hint : centre of mass of the shell lies at below the centre)
Physics-General