Maths-
General
Easy

Question

Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

hintHint:

1. When the difference between 2 consecutive differences for output values (y values) for a given constant change in the input values (x values) is constant. i.e. dy(n)- dy(n-1) is constant for any value of n, the function is known as a quadratic function.
2. Regression is a statistical tool used to find a model that can represent the relation between a given change in dependant variable (output values/ y values) for a given change in independent variable (input values/ x values).
Quadratic Equation using regression can be represented as-
Y = aX2 + bX + c, where-
Σy = nc + b(Σx) + a(Σx2)
Σxy = c(Σx) + b(Σx2) + a(Σx3)
Σx2y = c(Σx2) + b(Σx3) + a(Σx4)

The correct answer is: Second difference for data in the given table is 1. Quadratic regression for each data set can be represented using the function Y = 0.5X2. Also, the second difference is 2 times the a value.


    Step-by-step solution:-

    From the given information, we get-
    x coordinates in the given table pertains to length of bubble wrap (in inches) and y coordinates pertain to the cost of such bubble wrap.
    Now, from the given table, we observe the following readings-

    x1 = 1, y1 = 0.5;
    x2 = 2, y2 = 2;
    x3 = 3, y3 = 4.5;
    x4 = 4, y4 = 8;
    x5 = 5, y5 = 12.5.
    a). Difference between 2 consecutive x values-
                                                                                         dx1 = x2 - x1 = 2 - 1 = 1
                                                                                         dx2 = x3 - x2 = 3 - 2 = 1
                                                                                         dx3 = x4 - x3 = 4 - 3 = 1
                                                                                         dx4 = x5 - x4 = 5 - 4 = 1
    Difference between 2 consecutive y values-
                                                                                      dy1 = y2 - y1 = 2 - 0.5 = 1.5
                                                                                      dy2 = y3 - y2 = 4.5 - 2 = 2.5
                                                                                      dy3 = y4 - y3 = 8 - 4.5 = 3.5
                                                                                     dy4 = y5 - y4 = 12.5 - 8 = 4.5
    We observe that the difference for every consecutive x values is constant i.e. 1 but for y values the difference is not constant.
    Hence, the given function is not a linear function.
    b). Now, difference between 2 consecutive differences for y values-
                                                                                        dy2 - dy1 = 2.5 - 1.5 = 1
                                                                                        dy3 - dy2 = 3.5 - 2.5 = 1
                                                                                        dy4 - dy3 = 4.5 - 3.5 = 1
    We observe that the difference of differences of 2 consecutive y values are constant i.e. 1.
    Hence, the given function is a quadratic function.
    Using Quadratic Regression formula and values from the adjacent table-
                                                                                         Y = aX2 + bX + c, where-
                                                                                         Σy = nc + b(Σx) + a(Σx2)
                                                                                      ∴ 27.5 = 5c + b(15) + a(55)
                                                                                        ∴ 27.5 = 5c + 15b + 55a .................................................. (Equation i)
    Σxy = c(Σx) + b(Σx2) + a(Σx3)
                                                                                 ∴ 112.5 = c(15) + b(55) + a(225)
                                                                                    ∴ 112.5 = 15c + 55b + 225a ....................................... (Equation ii)
    Σx2y = c(Σx2) + b(Σx3) + a(Σx4)
                                                                                ∴ 489.5 = c(55) + b(225) + a(979)
                                                                                   ∴ 489.5 = 55c + 225b + 979a ....................... (Equation iii)
    Multiplying Equation i by 3, we get-
                                                                                         165a + 45b + 15c = 82.5 ............................... (Equation iv)
    Subtracting Equation i from iv, we get-
    165a + 45b + 15c = 82.5 …............................................... (Equation iv)
                                                                                           - 55a + 15b + 5c = 27.5 …............................................... (Equation i)
                                                                                                  110a + 30b = 55 .................................................. (Equation v)
    Dividing Equation iii by 11, we get-
                                                                                          89a + 20.45b + 5c = 44.5 ......................... (Equation vi)
    Subtracting Equation vi from Equation i, we get-
                                                                                          89a + 20.45b + 5c = 44.5 ......................... (Equation vi)
                                                                                           - 55a + 15b + 5c = 27.5 ......................... (Equation i)
                                                                                                34a + 5.45b = 17 ......................... (Equation vii)
    Multiplying Equation vii with 110, we get-
                                                                                            3,740a + 599.5b = 1870 ............................................... (Equation viii)
    Multiplying Equation v with 34, we get-
                                                                                            3,740a + 1,020b = 1870 ............................................... (Equation ix)
    Subtracting Equation viii from Equation ix, we get-
                                                                                           3,740a + 1,020b = 1870 ............................................... (Equation ix)
                                                                                         - 3,740a + 599.5b = 1870 ............................................... (Equation viii)
                                                                                                      420.5b = 0
    i.e. 420.5b = 0
                                                                                                ∴ b = 0/ 420.5 ................................... (Dividing both sides by 420.5)
                                                                                                     ∴ b = 0
    Substituting b = 0 in Equation vii, we get-
                                                                                              34a + 5.45b = 17 .................................................. (Equation v)
                                                                                          ∴ 34a + 5.45(0) = 17
                                                                                               ∴ 34a + 0 = 17
                                                                                               ∴ 34a = 17 - 0 ........................................ (Taking all constants together)
                                                                                               ∴ 34a = 17/34 ....................................... (Dividing both sides by 34)
                                                                                                   ∴ a = 0.5
    Substituting a = 0.5 and b = 0 in Equation i, we get-
                                                                                         55a + 15b + 5c = 27.5 .............................. (Equation i)
                                                                                   ∴ 55(0.5) + 15(0) + 5c = 27.5
                                                                                        ∴ 27.5 + 0 + 5c = 27.5
                                                                                          ∴ 27.5 + 5c = 27.5
                                                                                           ∴ 5c = 27.5 - 27.5 ..................... (Taking all constants together)
                                                                                                  ∴ 5c = 0
                                                                                               ∴ c = 0/27.5 ........................... (Dividing both sides by 27.5)
                                                                                                   ∴ c = 0
    ∴ The Quadratic Equation is-
                                                                                             Y = aX2 + bX + c
                                                                                       ∴ Y = 0.5 X2 + 0 X + 0
                                                                                              ∴ Y = 0.5X2
    From the above calculations, we can find the relation between a value in the quadratic model i.e. 0.5 and the second difference (d) of the data i.e. 1.
    We observe that-
                                                                                                 1 = 2 × 0.5
                                                                                                ∴ 1 = 2 × a
    ∴ Second difference = 2 × a
    Final Answer:-
    ∴ Second difference for data in the given table is 1. Quadratic regression for each data set can be represented using the function Y = 0.5X2. Also, the second difference is 2 times the a value.

    Related Questions to study

    General
    Maths-

    Carmen is considering two plans to pay off a $10,000 loan . The table show the amount remaining on the loan after x years . Which plan should carmen use to pay off the loan as soon as possible ? Justify your answer using a function model ?

    Carmen is considering two plans to pay off a $10,000 loan . The table show the amount remaining on the loan after x years . Which plan should carmen use to pay off the loan as soon as possible ? Justify your answer using a function model ?

    Maths-General
    General
    Maths-

    Solve the radical equation square root of x plus 4 end root minus square root of 3 x end root equals negative 2. Check for extraneous solutions

    Solve the radical equation square root of x plus 4 end root minus square root of 3 x end root equals negative 2. Check for extraneous solutions

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 5 x plus 1 end root plus 1 equals x. Check for extraneous solutions

    Solve the radical equation square root of 5 x plus 1 end root plus 1 equals x. Check for extraneous solutions

    Maths-General
    parallel
    General
    Maths-

    Solve the radical equation square root of 2 x end root equals 12. Check for extraneous solutions

    Solve the radical equation square root of 2 x end root equals 12. Check for extraneous solutions

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 25 plus x end root plus 5 equals 9 Check for extraneous solutions

    Solve the radical equation square root of 25 plus x end root plus 5 equals 9 Check for extraneous solutions

    Maths-General
    General
    Maths-

    Solve the radical equation square root of x plus 9 end root minus square root of 2 x end root equals 3

    Solve the radical equation square root of x plus 9 end root minus square root of 2 x end root equals 3

    Maths-General
    parallel
    General
    Maths-

    Function f represents the population , in millions , of Franklin x years from now. Function g represents the population , in millions , of Georgetown x years from now, If the pattern shown in the table continue , will franklin always have a greater population than Georgetown ? Explain.

    Function f represents the population , in millions , of Franklin x years from now. Function g represents the population , in millions , of Georgetown x years from now, If the pattern shown in the table continue , will franklin always have a greater population than Georgetown ? Explain.

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 6 minus x end root equals x

    Solve the radical equation square root of 6 minus x end root equals x

    Maths-General
    General
    Maths-

    What are the solutions to the equation left parenthesis x minus 3 x minus 6 right parenthesis to the power of 3 over 2 end exponent minus 14 equals negative 6

    What are the solutions to the equation left parenthesis x minus 3 x minus 6 right parenthesis to the power of 3 over 2 end exponent minus 14 equals negative 6

    Maths-General
    parallel
    General
    Maths-

    Escape velocity is the velocity at which an object must be travelling to leave a star or planet without falling back to its surface or into orbit. Escape Velocity V depends on the gravitational constant G , the mass M, and radius r, of the star or planet .
    V equals square root of fraction numerator 2 G M over denominator r end fraction end root
    Rewrite the equation to solve for mass,
    The escape velocity of earth is 11, 200 m/s and its radius is 6,371,000 m. The gravitational constant is 6.67x 10^-11. What is the earth's mass in kilograms?

    Escape velocity is the velocity at which an object must be travelling to leave a star or planet without falling back to its surface or into orbit. Escape Velocity V depends on the gravitational constant G , the mass M, and radius r, of the star or planet .
    V equals square root of fraction numerator 2 G M over denominator r end fraction end root
    Rewrite the equation to solve for mass,
    The escape velocity of earth is 11, 200 m/s and its radius is 6,371,000 m. The gravitational constant is 6.67x 10^-11. What is the earth's mass in kilograms?

    Maths-General
    General
    Maths-

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Maths-General
    General
    Maths-

    What are the solutions to the equation left parenthesis x plus 18 right parenthesis to the power of 3 over 2 end exponent equals left parenthesis x minus 2 right parenthesis cubed

    What are the solutions to the equation left parenthesis x plus 18 right parenthesis to the power of 3 over 2 end exponent equals left parenthesis x minus 2 right parenthesis cubed

    Maths-General
    parallel
    General
    Maths-

    Ella wrote three different computer apps to analyze some data. The table show the time in millisecond y for each app to analyze data as a function of the number of data items x.
    a. Use regression on a graphing calculator to find a function that models each data set . Explain your choice of model .
    b. Make a conjecture about which app will require the most time as the number of data items gets very large. How could you support your conjecture

    Ella wrote three different computer apps to analyze some data. The table show the time in millisecond y for each app to analyze data as a function of the number of data items x.
    a. Use regression on a graphing calculator to find a function that models each data set . Explain your choice of model .
    b. Make a conjecture about which app will require the most time as the number of data items gets very large. How could you support your conjecture

    Maths-General
    General
    Maths-

    What is the solution to the equation open parentheses x squared plus 5 x plus 25 close parentheses to the power of 3 over 2 end exponent equals 343

    What is the solution to the equation open parentheses x squared plus 5 x plus 25 close parentheses to the power of 3 over 2 end exponent equals 343

    Maths-General
    General
    Maths-

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.