Maths-
General
Easy

Question

Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

hintHint:

1. When the difference between 2 consecutive differences for output values (y values) for a given constant change in the input values (x values) is constant. i.e. dy(n)- dy(n-1) is constant for any value of n, the function is known as a quadratic function.
2. Regression is a statistical tool used to find a model that can represent the relation between a given change in dependant variable (output values/ y values) for a given change in independent variable (input values/ x values).
Quadratic Equation using regression can be represented as-
Y = aX2 + bX + c, where-
Σy = nc + b(Σx) + a(Σx2)
Σxy = c(Σx) + b(Σx2) + a(Σx3)
Σx2y = c(Σx2) + b(Σx3) + a(Σx4)

The correct answer is: Second difference for data in the given table is 6. Quadratic regression for each data set can be represented using the function Y = 3X2. Also, the second difference is 2 times the a value.


    Step-by-step solution:-

    From the given information, we get-
    x coordinates in the given table pertains to length of bubble wrap (in inches) and y coordinates pertain to the cost of such bubble wrap.
    Now, from the given table, we observe the following readings-

    x1 = 0, y1 = 0;
    x2 = 1, y2 = 3;
    x3 = 2, y3 = 12;
    x4 = 3, y4 = 27;
    x5 = 4, y5 = 48.
    a). Difference between 2 consecutive x values-
                                                                                         dx1 = x2 - x1 = 1 - 0 = 1
                                                                                         dx2 = x3 - x2 = 2 - 1 = 1
                                                                                         dx3 = x4 - x3 = 3 - 2 = 1
                                                                                         dx4 = x5 - x4 = 4 - 3 = 1
    Difference between 2 consecutive y values-
                                                                                         dy1 = y2 - y1 = 3 - 0 = 3
                                                                                        dy2 = y3 - y2 = 12 - 3 = 9
                                                                                      dy3 = y4 - y3 = 27 - 12 = 15
                                                                                      dy4 = y5 - y4 = 48 - 27 = 21
    We observe that the difference for every consecutive x values is constant i.e. 1 but for y values the difference is not constant.
    Hence, the given function is not a linear function.
    b). Now, difference between 2 consecutive differences for y values-
                                                                                             dy2 - dy1 = 9 - 3 = 6
                                                                                            dy3 - dy2 = 15 - 9 = 6
                                                                                           dy4 - dy3 = 21 - 15 = 6
    We observe that the difference of differences of 2 consecutive y values are constant i.e. 6.
    Hence, the given function is a quadratic function.
    Using Quadratic Regression formula and values from the adjacent table-
                                                                                          Y = aX2 + bX + c, where-
                                                                                          Σy = nc + b(Σx) + a(Σx2)
                                                                                         ∴ 90 = 5c + b(10) + a(30)
                                                                                          ∴ 90 = 5c + 10b + 30a .................................................. (Equation i)
    Σxy = c(Σx) + b(Σx2) + a(Σx3)
                                                                                      ∴ 300 = c(10) + b(30) + a(100)
                                                                                         ∴ 300 = 10c + 30b + 100a ....................................... (Equation ii)
    Σx2y = c(Σx2) + b(Σx3) + a(Σx4)
                                                                                     ∴ 1,062 = c(30) + b(100) + a(354)
                                                                                        ∴ 1,062 = 30c + 100b + 354a ....................... (Equation iii)

    Dividing Equation 2 by 2, we get-
                                                                                             50a + 15b + 5c = 150 …............................................... (Equation iv)
    Subtracting Equation I from Equation iv, we get-
                                                                                             50a + 15b + 5c = 150 …............................................... (Equation iv)
                                                                                            - 30a + 10b + 5c = 90 …............................................... (Equation i)
                                                                                                   20a + 5b = 60 .................................................. (Equation v)
    Multiplying Equation ii with 3, we get-
                                                                                           300a + 90b + 30c = 900 ......................... (Equation vi)
    Subtracting Equation vi from Equation iii, we get-
                                                                                         354a + 100b + 30c = 1,062 ......................... (Equation iii)
                                                                                         - 300a + 90b + 30c = 900 ......................... (Equation vi)
                                                                                                 54a + 10b = 162 ......................... (Equation vii)
    Multiplying Equation v with 2, we get-
                                                                                                40a + 10b = 120 ............................................... (Equation viii)
    Subtracting Equation viii from Equation vii, we get-
                                                                                                54a + 10b = 162 ............................................... (Equation vii)
                                                                                              - 40a + 10b = 120 ............................................... (Equation viii)
                                                                                                      14a = 42
    i.e. 14a = 42
                                                                                                    ∴ a = 42/ 14 ................................... (Dividing both sides by 14)
                                                                                                      ∴ a = 3
    Substituting a = 3 in Equation v, we get-
                                                                                                  20a + 5b = 60 .................................................. (Equation v)
                                                                                              ∴ 20(3) + 5b = 60
                                                                                                ∴ 60 + 5b = 60
                                                                                                ∴ 5b = 60 - 60 ........................................ (Taking all constants together)
                                                                                                    ∴ 5b = 0
                                                                                                    ∴ b = 0/5 ............................................ (Dividing both sides by 5)
                                                                                                     ∴ b = 0
    Substituting a = 3 and b = 0 in Equation i, we get-
                                                                                          30a + 10b + 5c = 90 .............................. (Equation i)
                                                                                     ∴ 30 (3) + 10 (0) + 5c = 90
                                                                                           ∴ 90 + 0 + 5c = 90
                                                                                              ∴ 90 + 5c = 90
                                                                                               ∴ 5c = 90 - 90 ..................... (Taking all constants together)
                                                                                                    ∴ 5c = 0
                                                                                                    ∴ c = 0/5 ........................... (Dividing both sides by 5)
                                                                                                     ∴ c = 0
    ∴ The Quadratic Equation is-
                                                                                              Y = aX2 + bX + c
                                                                                           ∴ Y = 3X2 + 0 X + 0
                                                                                                  ∴ Y = 3 X2
    From the above calculations, we can find the relation between a value in the quadratic model i.e. 3 and the second difference (d) of the data i.e. 6.
    We observe that-
                                                                                                     6 = 2 × 3
                                                                                                  ∴ d = 2 × a
    ∴ Second difference = 2 × a
    Final Answer:-
    ∴ Second difference for data in the given table is 6. Quadratic regression for each data set can be represented using the function Y = 3X2. Also, the second difference is 2 times the a value.

    Related Questions to study

    General
    Maths-

    Create a flow chart to show the process to determine whether a given data set represents a function that is linear , quadratic , exponential or none of these.

    Create a flow chart to show the process to determine whether a given data set represents a function that is linear , quadratic , exponential or none of these.

    Maths-General
    General
    Maths-

    Determine whether a linear , quadratic or exponential function best models the data . Then use regression to find the function that models the data ?

    Determine whether a linear , quadratic or exponential function best models the data . Then use regression to find the function that models the data ?

    Maths-General
    General
    Maths-

    Suppose that Y= 3 and Z= 16. Solve for the unknown value in the equation Y equals cube root of 2 x plus z end root minus 12 Round to the nearest tenth if necessary.

    Suppose that Y= 3 and Z= 16. Solve for the unknown value in the equation Y equals cube root of 2 x plus z end root minus 12 Round to the nearest tenth if necessary.

    Maths-General
    parallel
    General
    Maths-

    Derek is hang gliding on a clear day at an altitude of a feet. His visibility, v, is 67.1 mi. Use the formula v 1.225√a to find the altitude at which Derek is hang gliding

    Derek is hang gliding on a clear day at an altitude of a feet. His visibility, v, is 67.1 mi. Use the formula v 1.225√a to find the altitude at which Derek is hang gliding

    Maths-General
    General
    Maths-

    Big Ben’s pendulum takes 4s to swing back and forth. The formula t = 2The formula The formula t=2π√(L/32) gives the swing time, t, in seconds, based on the length of the pendulum, L, in feet. What is the minimum length necessary to build a clock with a pendulum that takes longer than
    Big ben’s pendulum to swing back and forth?

    Big Ben’s pendulum takes 4s to swing back and forth. The formula t = 2The formula The formula t=2π√(L/32) gives the swing time, t, in seconds, based on the length of the pendulum, L, in feet. What is the minimum length necessary to build a clock with a pendulum that takes longer than
    Big ben’s pendulum to swing back and forth?

    Maths-General
    General
    Maths-

    The half life of a certain type of soft drink is 5h. If you drink 50mL of this drink, the formula y equals 50 left parenthesis 0.5 right parenthesis to the power of t over 5 end exponent tells the amount of drink left in your system after t hours. How much of the soft drink will be left in your system after 16 hours?

    The half life of a certain type of soft drink is 5h. If you drink 50mL of this drink, the formula y equals 50 left parenthesis 0.5 right parenthesis to the power of t over 5 end exponent tells the amount of drink left in your system after t hours. How much of the soft drink will be left in your system after 16 hours?

    Maths-General
    parallel
    General
    Maths-

    Specialists can determine the speed a vehicle was travelling from the length of its skid marks, d,mand coefficient of friction, f. The formula for calculating the speed, s, is s = 15.9 √df. Rewritethe formula to solve for the length of the skid marks

    Specialists can determine the speed a vehicle was travelling from the length of its skid marks, d,mand coefficient of friction, f. The formula for calculating the speed, s, is s = 15.9 √df. Rewritethe formula to solve for the length of the skid marks

    Maths-General
    General
    Maths-

    Solve using the formula BSA = square root of fraction numerator H cross times M over denominator 3600 end fraction end root
    A sports medicine specialist determines that a hot-weather training strategy is appropriate for a165 cm tall individual whose BSA is less than 2.0. To the nearest hundredth, what can the mass of the individual be for the training strategy to be appropriate

    Solve using the formula BSA = square root of fraction numerator H cross times M over denominator 3600 end fraction end root
    A sports medicine specialist determines that a hot-weather training strategy is appropriate for a165 cm tall individual whose BSA is less than 2.0. To the nearest hundredth, what can the mass of the individual be for the training strategy to be appropriate

    Maths-General
    General
    Maths-

    Solve the radical equation square root of x plus 1 end root plus 1 equals square root of x plus 3 end root  Check for extraneous solutions

    Solve the radical equation square root of x plus 1 end root plus 1 equals square root of x plus 3 end root  Check for extraneous solutions

    Maths-General
    parallel
    General
    Maths-

    What are the solutions to the equation open parentheses x squared plus 5 x plus 5 close parentheses to the power of 5 over 2 end exponent equals 1

    What are the solutions to the equation open parentheses x squared plus 5 x plus 5 close parentheses to the power of 5 over 2 end exponent equals 1

    Maths-General
    General
    Maths-

    Solve the radical equation x plus 2 equals square root of x plus 2 end root. Identify any extraneous solutions

    Solve the radical equation x plus 2 equals square root of x plus 2 end root. Identify any extraneous solutions

    Maths-General
    General
    Maths-

    Solve the radical equation x equals square root of 7 x plus 8 end root. Identify any extraneous solutions

    Solve the radical equation x equals square root of 7 x plus 8 end root. Identify any extraneous solutions

    Maths-General
    parallel
    General
    Maths-

    Does a linear , quadratic , or exponential function best model the data ? Explain.

    Does a linear , quadratic , or exponential function best model the data ? Explain.

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 4 x plus 5 end root minus square root of x plus 1 end root equals 1 Check for extraneous solutions

    Solve the radical equation square root of 4 x plus 5 end root minus square root of x plus 1 end root equals 1 Check for extraneous solutions

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 3 x minus 2 end root equals x minus 4

    Solve the radical equation square root of 3 x minus 2 end root equals x minus 4

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.