Maths-
General
Easy

Question

Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

hintHint:

1. When the difference between 2 consecutive differences for output values (y values) for a given constant change in the input values (x values) is constant. i.e. dy(n)- dy(n-1) is constant for any value of n, the function is known as a quadratic function.
2. Regression is a statistical tool used to find a model that can represent the relation between a given change in dependant variable (output values/ y values) for a given change in independent variable (input values/ x values).
Quadratic Equation using regression can be represented as-
Y = aX2 + bX + c, where-
Σy = nc + b(Σx) + a(Σx2)
Σxy = c(Σx) + b(Σx2) + a(Σx3)
Σx2y = c(Σx2) + b(Σx3) + a(Σx4)

The correct answer is: Second difference for data in the given table is 52. Quadratic regression for each data set can be represented using the function Y = 6.5X2. Also, the second difference is 8 times the a value.


    Step-by-step solution:-

    From the given information, we get-
    x coordinates in the given table pertains to length of bubble wrap (in inches) and y coordinates pertain to the cost of such bubble wrap.
    Now, from the given table, we observe the following readings-

    x1 = 3, y1 = 58.5;
    x2 = 5, y2 = 162.5;
    x3 = 7, y3 = 318.5;
    x4 = 9, y4 = 526.5;
    x5 = 11, y5 = 786.5.
    a). Difference between 2 consecutive x values-
                                                                                         dx1 = x2 - x1 = 5 - 3 = 2
                                                                                         dx2 = x3 - x2 = 7 - 5 = 2
                                                                                         dx3 = x4 - x3 = 9 - 7 = 2
                                                                                        dx4 = x5 - x4 = 11 - 9 = 2
    Difference between 2 consecutive y values-
                                                                                 dy1 = y2 - y1 = 162.5 - 58.5 = 104
                                                                                dy2 = y3 - y2 = 318.5 - 162.5 = 156
                                                                                dy3 = y4 - y3 = 526.5 - 318.5 = 208
                                                                                dy4 = y5 - y4 = 786.5 - 526.5 = 260
    We observe that the difference for every consecutive x values is constant i.e. 1 but for y values the difference is not constant.
    Hence, the given function is not a linear function.
    b). Now, difference between 2 consecutive differences for y values-
                                                                                       dy2 - dy1 = 156 - 104 = 52
                                                                                       dy3 - dy2 = 208 - 156 = 52
                                                                                        dy4 - dy3 = 21 - 15 = 52
    We observe that the difference of differences of 2 consecutive y values are constant i.e. 52.
    Hence, the given function is a quadratic function.
    Using Quadratic Regression formula and values from the adjacent table-
                                                                                        Y = aX2 + bX + c, where-
                                                                                        Σy = nc + b(Σx) + a(Σx2)
                                                                                  ∴ 1,852.5 = 5c + b(35) + a(285)
                                                                                    ∴ 1,852.5 = 5c + 35b + 285a .................................................. (Equation i)
    Σxy = c(Σx) + b(Σx2) + a(Σx3)
                                                                          ∴ 16,607.5 = c(35) + b(285) + a(2,555)
                                                                             ∴ 16,607.5 = 35c + 285b + 2,555a ....................................... (Equation ii)
    Σx2y = c(Σx2) + b(Σx3) + a(Σx4)
                                                                     ∴ 1,58,008.5 = c(285) + b(2,555) + a(24,309)
                                                                       ∴ 1,58,008.5 = 285c + 2,555b + 24,309a ....................... (Equation iii)
    Multiplying Equation i by 7, we get-
                                                                              1,955a + 245b + 35c = 12,967.5 …............................................... (Equation iv)
    Subtracting Equation iv from Equation ii, we get-
                                                                               2555a + 285b + 35c = 16,607.5 …............................................... (Equation ii)
                                                                             - 1,955a + 245b + 35c = 12,967.5 …............................................... (Equation iv)
                                                                                        560a + 40b = 3,640 .................................................. (Equation v)
    Multiplying Equation i with 57, we get-
                                                                         16,245a + 1,995b + 285c = 1,05,592.5 ......................... (Equation vi)
    Subtracting Equation vi from Equation iii, we get-
                                                                          24,309a + 2,555b + 285c = 1,58,008.5 ......................... (Equation iii)
                                                                        - 16,245a + 1,995b + 285c = 1,05,592.5 ......................... (Equation vi)
                                                                                     8,064a + 560b = 52,416 ......................... (Equation vii)
    Dividing Equation vii with 14, we get-
                                                                                        576a + 40b = 3,744 ............................................... (Equation viii)
    Subtracting Equation v from Equation viii, we get-
                                                                                        576a + 40b = 3,744 ............................................... (Equation viii)
                                                                                      - 560a + 40b = 3,640 ............................................... (Equation v)
                                                                                               16a = 104
    i.e. 16a = 104
                                                                                             ∴ a = 104/ 16 ................................... (Dividing both sides by 16)
                                                                                                ∴ a = 6.5
    Substituting a = 6.5 in Equation viii, we get-
                                                                                            576a + 40b = 3,744 .................................................. (Equation viii)
                                                                                      ∴ 576(6.5) + 40b = 3,744
                                                                                        ∴ 3,744 + 40b = 3,744
                                                                                        ∴ 40b = 3,744 - 3,744 ........................................ (Taking all constants together)
                                                                                                 ∴ 40b = 0
                                                                                                ∴ b = 0/40 ............................................ (Dividing both sides by 40)
                                                                                                   ∴ b = 0
    Substituting a = 6.5 and b = 0 in Equation i, we get-
                                                                                    285a + 35b + 5c = 1,852.5 .............................. (Equation i)
                                                                              ∴ 285(6.5) + 35 (0) + 5c = 1,852.5
                                                                                   ∴ 1,852.5 + 0 + 5c = 1,852.5
                                                                                      ∴ 1,852.5 + 5c = 1,852.5
                                                                                       ∴ 5c = 1,852.5 - 1,852.5 ..................... (Taking all constants together)
                                                                                                   ∴ 5c = 0
                                                                                                  ∴ c = 0/5 ........................... (Dividing both sides by 5)
                                                                                                   ∴ c = 0
    ∴ The Quadratic Equation is-
                                                                                              Y = aX2 + bX + c
                                                                                          ∴ Y = 6.5X2 + 0X + 0
                                                                                                ∴ Y = 6.5X2
    From the above calculations, we can find the relation between a value in the quadratic model i.e. 6.5 and the second difference (d) of the data i.e. 6.
    We observe that-
                                                                                                   52 = 8 × 6.5
                                                                                                   ∴ d = 8 × a
    ∴ Second difference = 8 × a
    Final Answer:-
    ∴ Second difference for data in the given table is 52. Quadratic regression for each data set can be represented using the function Y = 6.5X2. Also, the second difference is 8 times the a value.

    Related Questions to study

    General
    Maths-

    Solve the radical equationsquare root of 6 x minus 20 end root minus x equals negative 6. Check for extraneous solutions

    Solve the radical equationsquare root of 6 x minus 20 end root minus x equals negative 6. Check for extraneous solutions

    Maths-General
    General
    Maths-

    Use the functions shown :
    a. Evaluate each function for x=6 , x=8 and x=12
    b. When will function h exceed function f and function g ?

    Use the functions shown :
    a. Evaluate each function for x=6 , x=8 and x=12
    b. When will function h exceed function f and function g ?

    Maths-General
    General
    Maths-

    The graph shows population models for three cities , based on data over a five year period. If the populations continue to increase in the same ways , when will the population of city C exceed the populations of the other two cities ?

    The graph shows population models for three cities , based on data over a five year period. If the populations continue to increase in the same ways , when will the population of city C exceed the populations of the other two cities ?

    Maths-General
    parallel
    General
    Maths-

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Maths-General
    General
    Maths-

    Carmen is considering two plans to pay off a $10,000 loan . The table show the amount remaining on the loan after x years . Which plan should carmen use to pay off the loan as soon as possible ? Justify your answer using a function model ?

    Carmen is considering two plans to pay off a $10,000 loan . The table show the amount remaining on the loan after x years . Which plan should carmen use to pay off the loan as soon as possible ? Justify your answer using a function model ?

    Maths-General
    General
    Maths-

    Solve the radical equation square root of x plus 4 end root minus square root of 3 x end root equals negative 2. Check for extraneous solutions

    Solve the radical equation square root of x plus 4 end root minus square root of 3 x end root equals negative 2. Check for extraneous solutions

    Maths-General
    parallel
    General
    Maths-

    Solve the radical equation square root of 5 x plus 1 end root plus 1 equals x. Check for extraneous solutions

    Solve the radical equation square root of 5 x plus 1 end root plus 1 equals x. Check for extraneous solutions

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 2 x end root equals 12. Check for extraneous solutions

    Solve the radical equation square root of 2 x end root equals 12. Check for extraneous solutions

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 25 plus x end root plus 5 equals 9 Check for extraneous solutions

    Solve the radical equation square root of 25 plus x end root plus 5 equals 9 Check for extraneous solutions

    Maths-General
    parallel
    General
    Maths-

    Solve the radical equation square root of x plus 9 end root minus square root of 2 x end root equals 3

    Solve the radical equation square root of x plus 9 end root minus square root of 2 x end root equals 3

    Maths-General
    General
    Maths-

    Function f represents the population , in millions , of Franklin x years from now. Function g represents the population , in millions , of Georgetown x years from now, If the pattern shown in the table continue , will franklin always have a greater population than Georgetown ? Explain.

    Function f represents the population , in millions , of Franklin x years from now. Function g represents the population , in millions , of Georgetown x years from now, If the pattern shown in the table continue , will franklin always have a greater population than Georgetown ? Explain.

    Maths-General
    General
    Maths-

    Solve the radical equation square root of 6 minus x end root equals x

    Solve the radical equation square root of 6 minus x end root equals x

    Maths-General
    parallel
    General
    Maths-

    What are the solutions to the equation left parenthesis x minus 3 x minus 6 right parenthesis to the power of 3 over 2 end exponent minus 14 equals negative 6

    What are the solutions to the equation left parenthesis x minus 3 x minus 6 right parenthesis to the power of 3 over 2 end exponent minus 14 equals negative 6

    Maths-General
    General
    Maths-

    Escape velocity is the velocity at which an object must be travelling to leave a star or planet without falling back to its surface or into orbit. Escape Velocity V depends on the gravitational constant G , the mass M, and radius r, of the star or planet .
    V equals square root of fraction numerator 2 G M over denominator r end fraction end root
    Rewrite the equation to solve for mass,
    The escape velocity of earth is 11, 200 m/s and its radius is 6,371,000 m. The gravitational constant is 6.67x 10^-11. What is the earth's mass in kilograms?

    Escape velocity is the velocity at which an object must be travelling to leave a star or planet without falling back to its surface or into orbit. Escape Velocity V depends on the gravitational constant G , the mass M, and radius r, of the star or planet .
    V equals square root of fraction numerator 2 G M over denominator r end fraction end root
    Rewrite the equation to solve for mass,
    The escape velocity of earth is 11, 200 m/s and its radius is 6,371,000 m. The gravitational constant is 6.67x 10^-11. What is the earth's mass in kilograms?

    Maths-General
    General
    Maths-

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Calculate the second difference for data in the table. Use a graphing calculator to find the quadratic regression for each data set. Make a conjecture about the relationship between the a values in the quadratic models and the second difference of the data.

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.