Maths-
General
Easy

Question

Cylindrical vessel of diameter 9 cm has some water in it. A cylindrical iron piece of diameter 6 cm and height 4.5 cm is dropped in it. After it was completely immersed, find the rise in the level of water.

hintHint:

If we recall the experiment of Archimedes, he told that if we put anything in water then the volume of the risen water will be equal to the volume of that thing. Here, we use this principle to solve the problem.

The correct answer is: The rise in the water is 2 cm.


    Explanations:
    Step 1 of 3:
    Cylindrical vessel has base radius, r subscript v  = 9/2 = 4.5cm and let the rise in water level due to putting the iron piece in the vessel be h subscript v  cm.
    The volume of the risen water equals pi 4.5 squared h subscript v cm3
    Step 2 of 3:
    The cylindrical iron piece has base radius r subscript i = 6/2 = 3cm and height, h subscript i = 4.5 cm
    Then the volume of the iron piece =pi cross times 3 squared cross times 4.5=  cm3
    Step 3 of 3:
    According to the principle of Archimedes,
    pi 4.5 squared h subscript v equals pi 3 squared 4.5
    not stretchy rightwards double arrow h subscript v equals fraction numerator 3 squared over denominator 4.5 end fraction equals 2
    Final Answer:
    The rise in the water is 2 cm.

    Related Questions to study

    General
    Maths-


    During mineral formation, the same chemical compound can be come different minerals depending on the temperature and pressure at the time of formation. A phase diagram is a graph that shows the conditions that are needed to form each mineral. The graph above is a portion of the phase diagram for aluminosilicates, with the temperature t , in degrees
    Celsius open parentheses blank to the power of ring operator straight C close parentheses , on the horizontal axis, and the pressure p , in gigapascals (G Pa), on the
    Which of the following systems of inequalities best describes the region where sillimanite can form?

    Note:
    We do not have the exact inequalities in the option, so we choose the one from the options which is the closest approximation of the inequalities that we have calculated. There are a couple of formulas and concepts used here, such as the equation of a line passing through two points and the concept that the region below a line is given by replacing the equality sign with less than or equal to in the standard form of the equation and vice versa.


    During mineral formation, the same chemical compound can be come different minerals depending on the temperature and pressure at the time of formation. A phase diagram is a graph that shows the conditions that are needed to form each mineral. The graph above is a portion of the phase diagram for aluminosilicates, with the temperature t , in degrees
    Celsius open parentheses blank to the power of ring operator straight C close parentheses , on the horizontal axis, and the pressure p , in gigapascals (G Pa), on the
    Which of the following systems of inequalities best describes the region where sillimanite can form?

    Maths-General

    Note:
    We do not have the exact inequalities in the option, so we choose the one from the options which is the closest approximation of the inequalities that we have calculated. There are a couple of formulas and concepts used here, such as the equation of a line passing through two points and the concept that the region below a line is given by replacing the equality sign with less than or equal to in the standard form of the equation and vice versa.

    General
    Maths-

    If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent by

    If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent by

    Maths-General
    General
    Maths-

    Solve: fraction numerator 1 over denominator 2 x end fraction plus fraction numerator 1 over denominator 3 y end fraction equals 2 and fraction numerator 1 over denominator 3 x end fraction plus fraction numerator 1 over denominator 2 y end fraction equals 13 over 6 by using elimination method.

    Solve: fraction numerator 1 over denominator 2 x end fraction plus fraction numerator 1 over denominator 3 y end fraction equals 2 and fraction numerator 1 over denominator 3 x end fraction plus fraction numerator 1 over denominator 2 y end fraction equals 13 over 6 by using elimination method.

    Maths-General
    parallel
    General
    Maths-

    ABCD is a parallelogram of area 162 sq., P is the point on AB such that AP:PB = 1:2, calculate the area of Triangle APD and the ratio PQ:QD, where Q is the point of intersection of AC and PD

    ABCD is a parallelogram of area 162 sq., P is the point on AB such that AP:PB = 1:2, calculate the area of Triangle APD and the ratio PQ:QD, where Q is the point of intersection of AC and PD

    Maths-General
    General
    Maths-

    How many litres of water flows out through a pipe having an area of cross-section of 5 cm2 in one minute, if the speed of water in pipe is 30 cm/sec?

    How many litres of water flows out through a pipe having an area of cross-section of 5 cm2 in one minute, if the speed of water in pipe is 30 cm/sec?

    Maths-General
    General
    Maths-

    Curved surface area of a right circular cylinder of height 14 cm is 88 cm2. Find the volume of the cylinder.

    Curved surface area of a right circular cylinder of height 14 cm is 88 cm2. Find the volume of the cylinder.

    Maths-General
    parallel
    General
    Maths-

    The sides of a parallelogram are 3cm and 2cm and the distance between two longer sides is 1.5cm. Find the distance between the shorter sides?

    The sides of a parallelogram are 3cm and 2cm and the distance between two longer sides is 1.5cm. Find the distance between the shorter sides?

    Maths-General
    General
    Maths-

    Solve: fraction numerator 5 over denominator x plus y end fraction minus fraction numerator 2 over denominator x minus y end fraction equals 1 and fraction numerator 15 over denominator x plus y end fraction minus fraction numerator 7 over denominator x minus y end fraction equals 10

    Solve: fraction numerator 5 over denominator x plus y end fraction minus fraction numerator 2 over denominator x minus y end fraction equals 1 and fraction numerator 15 over denominator x plus y end fraction minus fraction numerator 7 over denominator x minus y end fraction equals 10

    Maths-General
    General
    Maths-

    The cross section of a canal is atrapezium in shape. If the canal is 10m wide at the top and 6m wide at the bottom and the area of the cross section is 840 sq. m, find the depth of the canal ?

    The cross section of a canal is atrapezium in shape. If the canal is 10m wide at the top and 6m wide at the bottom and the area of the cross section is 840 sq. m, find the depth of the canal ?

    Maths-General
    parallel
    General
    Maths-

    The total surface area of a cylinder of height 6.5 cm is 220 sq. cm. Find its volume.

    The total surface area of a cylinder of height 6.5 cm is 220 sq. cm. Find its volume.

    Maths-General
    General
    Maths-

    In a trapezium, the two non parallel sides are equal in length, each being 5 units. The parallel sides are at a distance of 3 units apart. If the smaller side of the parallel side is of length 2 units, then what is the sum of the diagonals of the trapezium ?

    In a trapezium, the two non parallel sides are equal in length, each being 5 units. The parallel sides are at a distance of 3 units apart. If the smaller side of the parallel side is of length 2 units, then what is the sum of the diagonals of the trapezium ?

    Maths-General
    General
    Maths-

    The base radius of a cylinder is 5/3 times its height. The cost of painting its C.S.A. at 2 paise/cm2 is Rs 92.40. What volume of the paint is required?

    The base radius of a cylinder is 5/3 times its height. The cost of painting its C.S.A. at 2 paise/cm2 is Rs 92.40. What volume of the paint is required?

    Maths-General
    parallel
    General
    Maths-


    During mineral formation, the same chemical compound can beco me different minerals depending on the temperature and pressure at the time of formation. A phase diagram is a graph that shows the conditions that are needed to form each mineral. The graph above is a portion of the phase diagram for aluminosilicates, with the temperature t , in degrees Celsius open parentheses blank to the power of ring operator straight C close parentheses , on the horizontal axis, and the pressure p , in gigapascals (GPa), on the vertical axis.
    P equals negative 0.00146 T plus 1.11
    An equation of the boundary line between the andalusite and sillimanite regions is approximated by the equation above. What is the meaning of the T-intercept of this line?

    Note;
    A phase diagram represents the different physical states of some substance under different conditions, such as termperature and pressure, graphically. It may seem like a complicated graph but we just needed to focus on the equation of one given line.


    During mineral formation, the same chemical compound can beco me different minerals depending on the temperature and pressure at the time of formation. A phase diagram is a graph that shows the conditions that are needed to form each mineral. The graph above is a portion of the phase diagram for aluminosilicates, with the temperature t , in degrees Celsius open parentheses blank to the power of ring operator straight C close parentheses , on the horizontal axis, and the pressure p , in gigapascals (GPa), on the vertical axis.
    P equals negative 0.00146 T plus 1.11
    An equation of the boundary line between the andalusite and sillimanite regions is approximated by the equation above. What is the meaning of the T-intercept of this line?

    Maths-General

    Note;
    A phase diagram represents the different physical states of some substance under different conditions, such as termperature and pressure, graphically. It may seem like a complicated graph but we just needed to focus on the equation of one given line.

    General
    Maths-

    Solve the system of equation by using elimination: 2 over x plus 3 over y equals 1 text  and  end text 7 over x plus 4 over y equals 1 7 over 8

    Solve the system of equation by using elimination: 2 over x plus 3 over y equals 1 text  and  end text 7 over x plus 4 over y equals 1 7 over 8

    Maths-General
    General
    General

    Farmer Joe had 35 customers for the whole morning. He knew 20 of them. How many new customers did he meet today ?

    Read the problem carefully multiple times in order to understand it.

    Farmer Joe had 35 customers for the whole morning. He knew 20 of them. How many new customers did he meet today ?

    GeneralGeneral

    Read the problem carefully multiple times in order to understand it.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.