Maths-
General
Easy

Question

text  If  end text 0 less than theta less than pi over 2 text  and  end text 2 sin invisible function application theta equals square root of 3 cos space 10 to the power of ring operator plus sin space 10 to the power of ring operator text  then  end text theta equals

  1. 70 to the power of ring operator
  2. 50 to the power of ring operator
  3. 60 to the power of ring operator
  4. 40 to the power of ring operator

hintHint:

We will first rearrange the given expression as follows sin open parentheses theta close parentheses equals fraction numerator square root of 3 over denominator 2 end fraction cos open parentheses 10 to the power of ring operator close parentheses plus 1 half sin open parentheses 10 to the power of ring operator close parentheses  and then use the formula of
sin open parentheses A plus B close parentheses

The correct answer is: 70 to the power of ring operator


    In this question we are given expression
    2 sin invisible function application theta equals square root of 3 cos space 10 to the power of ring operator plus sin space 10 to the power of ring operator and we have to find theta.
    Step1:  Rearranging the equation
    We will rearrange the equation by dividing both sides by 2. The resulting equation will be
    sin open parentheses theta close parentheses equals fraction numerator square root of 3 over denominator 2 end fraction cos open parentheses 10 to the power of ring operator close parentheses plus 1 half sin open parentheses 10 to the power of ring operator close parentheses
    Step2: Using the formula of sin open parentheses A plus B close parentheses
    We know that sin open parentheses A plus B close parentheses space equals space sin open parentheses A close parentheses cos open parentheses B close parentheses plus sin open parentheses B close parentheses cos open parentheses A close parentheses
    We also know that fraction numerator square root of 3 over denominator 2 end fraction equals sin open parentheses 60 to the power of ring operator close parentheses and 1 half equals cos open parentheses 60 to the power of ring operator close parentheses
    Step3: Putting the values in the formula of sin open parentheses A plus B close parentheses we get,
    sin open parentheses 60 to the power of ring operator close parentheses cos open parentheses 10 to the power of ring operator close parentheses plus sin open parentheses 10 to the power of ring operator close parentheses cos open parentheses 60 to the power of ring operator close parentheses
    =>sin open parentheses 60 to the power of ring operator plus 10 to the power of ring operator close parentheses
    =>sin open parentheses 70 to the power of ring operator close parentheses

    Related Questions to study

    General
    Maths-

    cos space left parenthesis n plus 1 right parenthesis alpha cos space left parenthesis n minus 1 right parenthesis alpha plus sin space left parenthesis n plus 1 right parenthesis alpha sin space left parenthesis n minus 1 right parenthesis alpha equals

    cos space left parenthesis n plus 1 right parenthesis alpha cos space left parenthesis n minus 1 right parenthesis alpha plus sin space left parenthesis n plus 1 right parenthesis alpha sin space left parenthesis n minus 1 right parenthesis alpha equals

    Maths-General
    General
    Maths-

    sin space 40 to the power of ring operator 35 cos space 19 to the power of ring operator 25 plus cos space 40 to the power of ring operator 35 to the power of ring operator sin space 19 to the power of ring operator 25 equals

    sin space 40 to the power of ring operator 35 cos space 19 to the power of ring operator 25 plus cos space 40 to the power of ring operator 35 to the power of ring operator sin space 19 to the power of ring operator 25 equals

    Maths-General
    General
    Maths-

    Assertion A: In a right-angled triangle s i n squared space A plus s i n squared space B plus s e c squared space C equals 2 Reason R colonif alpha comma beta are complementary angles then s i n squared space alpha plus s i n squared space beta equals 1

    Assertion A: In a right-angled triangle s i n squared space A plus s i n squared space B plus s e c squared space C equals 2 Reason R colonif alpha comma beta are complementary angles then s i n squared space alpha plus s i n squared space beta equals 1

    Maths-General
    parallel
    General
    Maths-

    AB is a line segment of length 24 cm and C is its middle point. On AB, A and CB semi-circles are described. The radius of circle which touches all these semi-circles is

    AB is a line segment of length 24 cm and C is its middle point. On AB, A and CB semi-circles are described. The radius of circle which touches all these semi-circles is

    Maths-General
    General
    Maths-

    in a triangle P Q R 3 sin space P plus 4 cos space Q equals 6 and 4 sin space Q plus 3 cos p=1 then

    in a triangle P Q R 3 sin space P plus 4 cos space Q equals 6 and 4 sin space Q plus 3 cos p=1 then

    Maths-General
    General
    Maths-

    The expression fraction numerator tan space A over denominator 1 minus cat space A end fraction plus fraction numerator cot space A over denominator 1 minus tan space d end fraction can be written as

    The expression fraction numerator tan space A over denominator 1 minus cat space A end fraction plus fraction numerator cot space A over denominator 1 minus tan space d end fraction can be written as

    Maths-General
    parallel
    General
    Maths-

    if straight f subscript straight k left parenthesis straight x right parenthesis equals 1 divided by straight k left parenthesis sin to the power of straight k space straight x plus cos to the power of straight k space straight x right parenthesis where straight x element of straight R comma straight k greater or equal than 1 then straight f subscript 4 left parenthesis straight x right parenthesis minus straight f subscript 6 left parenthesis straight x right parenthesis equals

    if straight f subscript straight k left parenthesis straight x right parenthesis equals 1 divided by straight k left parenthesis sin to the power of straight k space straight x plus cos to the power of straight k space straight x right parenthesis where straight x element of straight R comma straight k greater or equal than 1 then straight f subscript 4 left parenthesis straight x right parenthesis minus straight f subscript 6 left parenthesis straight x right parenthesis equals

    Maths-General
    General
    Maths-

    Two arcs of same length of two different circles subtended angles of  25 to the power of ring operator and 75 to the power of ring operator  at their centers respectively. Then the ratio of the radii of the circles is

    Two arcs of same length of two different circles subtended angles of  25 to the power of ring operator and 75 to the power of ring operator  at their centers respectively. Then the ratio of the radii of the circles is

    Maths-General
    General
    Maths-

    Let theta element of left parenthesis 0 comma pi divided by 4 right parenthesis and straight t subscript 1 equals left parenthesis tan space theta right parenthesis to the power of me theta end exponent comma straight t subscript 2 equals left parenthesis tan space theta right parenthesis to the power of cot space theta end exponent comma straight t subscript 3 equals left parenthesis cot space theta right parenthesis to the power of con space theta end exponent straight t subscript 4 equals left parenthesis cot space theta right parenthesis to the power of cos space theta end exponent then

    Let theta element of left parenthesis 0 comma pi divided by 4 right parenthesis and straight t subscript 1 equals left parenthesis tan space theta right parenthesis to the power of me theta end exponent comma straight t subscript 2 equals left parenthesis tan space theta right parenthesis to the power of cot space theta end exponent comma straight t subscript 3 equals left parenthesis cot space theta right parenthesis to the power of con space theta end exponent straight t subscript 4 equals left parenthesis cot space theta right parenthesis to the power of cos space theta end exponent then

    Maths-General
    parallel
    General
    Maths-

    straight a equals sec space 2 to the power of ring operator comma straight b equals sec space 2 rightwards double arrow

    straight a equals sec space 2 to the power of ring operator comma straight b equals sec space 2 rightwards double arrow

    Maths-General
    General
    Maths-

    Ix equals cos invisible function application 1 to the power of ring operator comma y equals cos invisible function application 1 not stretchy rightwards double arrow

    Ix equals cos invisible function application 1 to the power of ring operator comma y equals cos invisible function application 1 not stretchy rightwards double arrow

    Maths-General
    General
    Maths-

    If ABCD is a cynic quadrilateral such that 12 tan A minus 5 equals 0 and 5cos B+3=0, then cos C tan D=

    If ABCD is a cynic quadrilateral such that 12 tan A minus 5 equals 0 and 5cos B+3=0, then cos C tan D=

    Maths-General
    parallel
    General
    Maths-

    integral fraction numerator d x over denominator square root of x squared plus 2 x plus 1 end root end fraction = A log |x + 1| + C for x < – 1 then A is -

    integral fraction numerator d x over denominator square root of x squared plus 2 x plus 1 end root end fraction = A log |x + 1| + C for x < – 1 then A is -

    Maths-General
    General
    Maths-

    cos space A comma sin space A comma cot space A spaceare in then tan to the power of 6 straight A minus tan squared space of 1em straight A equals

    cos space A comma sin space A comma cot space A spaceare in then tan to the power of 6 straight A minus tan squared space of 1em straight A equals

    Maths-General
    General
    Maths-

    straight f left parenthesis straight x right parenthesis equals straight x cubed minus 2 straight x squared plus 3 straight x minus 5 not stretchy rightwards double arrow straight f open square brackets sin space open parentheses fraction numerator 5 straight pi over denominator 2 end fraction close parentheses close square brackets plus straight f open square brackets sin space open parentheses fraction numerator 3 straight pi over denominator 2 end fraction close parentheses close square brackets equals

    straight f left parenthesis straight x right parenthesis equals straight x cubed minus 2 straight x squared plus 3 straight x minus 5 not stretchy rightwards double arrow straight f open square brackets sin space open parentheses fraction numerator 5 straight pi over denominator 2 end fraction close parentheses close square brackets plus straight f open square brackets sin space open parentheses fraction numerator 3 straight pi over denominator 2 end fraction close parentheses close square brackets equals

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.