Maths-
General
Easy
Question
Let A be a 2 × 2 matrix with real entries. Let I be the 2 × 2 identity matrix. Denote by tr (A), the sum of diagonal entries of A, Assume that A2 = I
Statement- 1:If A ≠ I and A ≠ – I, then det A = – 1
Statement -2 :If A ≠ I and A ≠–I, then tr (A) ≠ 0
- If both (A) and (R) are true, and (R) is the correct explanation of (A).
- If both (A) and (R) are true but (R) is not the correct explanation of (A).
- If (A) is true but (R) is false.
- If (A) is false but (R) is true.
The correct answer is: If (A) is true but (R) is false.
Related Questions to study
maths-
Statement I : If A = , then A–1 =
Statement II : The inverse of a diagonal matrix is a diagonal matrix..
Statement I : If A = , then A–1 =
Statement II : The inverse of a diagonal matrix is a diagonal matrix..
maths-General
physics-
The figure shows the positions and velocities of two particles. If the particles move under the mutual attraction of each other, then the position of centre of mass at t =1 s is
The figure shows the positions and velocities of two particles. If the particles move under the mutual attraction of each other, then the position of centre of mass at t =1 s is
physics-General
physics-
The velocity of centre of mass of the system as shown in the figure
The velocity of centre of mass of the system as shown in the figure
physics-General
physics-
Three man A, B & C of mass 40 kg, 50 kg & 60 kg are standing on a plank of mass 90 kg, which is kept on a smooth horizontal plane. If A & C exchange their positions then mass B will shift
Three man A, B & C of mass 40 kg, 50 kg & 60 kg are standing on a plank of mass 90 kg, which is kept on a smooth horizontal plane. If A & C exchange their positions then mass B will shift
physics-General
physics-
Considering a system having two masses m1 and m2 in which first mass is pushed towards centre of mass by a distance a, the distance required to be moved for second mass to keep centre of mass at same position is
Considering a system having two masses m1 and m2 in which first mass is pushed towards centre of mass by a distance a, the distance required to be moved for second mass to keep centre of mass at same position is
physics-General
physics-
A uniform wire of length is bent into the shape of 'V' as shown. The distance of its centre of mass from the vertex A is
A uniform wire of length is bent into the shape of 'V' as shown. The distance of its centre of mass from the vertex A is
physics-General
physics-
Centre of mass of two uniform rods of same length but made up of different materials & kept as shown, if the meeting point is the origin of co–ordinates
Centre of mass of two uniform rods of same length but made up of different materials & kept as shown, if the meeting point is the origin of co–ordinates
physics-General
maths-
Statement I : The inverse of the matrix does not exist.
Statement II : The matrix is singular. [ = 0, since R2 = 2R1]
Statement I : The inverse of the matrix does not exist.
Statement II : The matrix is singular. [ = 0, since R2 = 2R1]
maths-General
physics-
Two blocks A and B of masses m and 2m respectively are connected by a spring of spring constant k. The masses are moving to the right with a uniform velocity each, the heavier mass leading the lighter one. The spring is of natural length during this motion. Block B collides head on with a third block C of mass 2m. at rest, the collision being completely inelastic. The maximum compression of the spring after collision is –
Two blocks A and B of masses m and 2m respectively are connected by a spring of spring constant k. The masses are moving to the right with a uniform velocity each, the heavier mass leading the lighter one. The spring is of natural length during this motion. Block B collides head on with a third block C of mass 2m. at rest, the collision being completely inelastic. The maximum compression of the spring after collision is –
physics-General
physics-
Two blocks A and B of masses m and 2m respectively are connected by a spring of spring constant k. The masses are moving to the right with a uniform velocity each, the heavier mass leading the lighter one. The spring is of natural length during this motion. Block B collides head on with a third block C of mass 2m. at rest, the collision being completely inelastic. The velocity of centre of mass of system of block A, B & C is-
Two blocks A and B of masses m and 2m respectively are connected by a spring of spring constant k. The masses are moving to the right with a uniform velocity each, the heavier mass leading the lighter one. The spring is of natural length during this motion. Block B collides head on with a third block C of mass 2m. at rest, the collision being completely inelastic. The velocity of centre of mass of system of block A, B & C is-
physics-General
physics-
Two blocks A and B of masses m and 2m respectively are connected by a spring of spring constant k. The masses are moving to the right with a uniform velocity each, the heavier mass leading the lighter one. The spring is of natural length during this motion. Block B collides head on with a third block C of mass 2m. at rest, the collision being completely inelastic. The velocity of block B just after collision is-
Two blocks A and B of masses m and 2m respectively are connected by a spring of spring constant k. The masses are moving to the right with a uniform velocity each, the heavier mass leading the lighter one. The spring is of natural length during this motion. Block B collides head on with a third block C of mass 2m. at rest, the collision being completely inelastic. The velocity of block B just after collision is-
physics-General
physics-
Two blocks A and B are joined together with a compressed spring. When the system is released, the two blocks appear to be moving with unequal speeds in the opposite directions as shown in figure. Select incorrect statement(s)
Two blocks A and B are joined together with a compressed spring. When the system is released, the two blocks appear to be moving with unequal speeds in the opposite directions as shown in figure. Select incorrect statement(s)
physics-General
Maths-
Statement I : The order of the matrix A is 4 × 5 and that of B is 3 × 4. Then the matrix AB is not possible.
Statement II : AB is defined if number of columns of A = number of rows of B
The product of two matrices A and B is defined if the number of columns of A is equal to the number of rows of B. If both A and B are square matrices of the same order, then both AB and BA are defined. If AB and BA are both defined, it is not necessary that AB = BA.
Statement I : The order of the matrix A is 4 × 5 and that of B is 3 × 4. Then the matrix AB is not possible.
Statement II : AB is defined if number of columns of A = number of rows of B
Maths-General
The product of two matrices A and B is defined if the number of columns of A is equal to the number of rows of B. If both A and B are square matrices of the same order, then both AB and BA are defined. If AB and BA are both defined, it is not necessary that AB = BA.
maths-
Statement I : The determinant of matrix
Statement II : The determinant of a skew symmetric matrix of odd order is zero.
Statement I : The determinant of matrix
Statement II : The determinant of a skew symmetric matrix of odd order is zero.
maths-General
physics-
A spring lies along an x axis attached to a wall at one end and a block at the other end. The block rests on a frictionless surface at x = 0. A force of constant magnitude F is applied to the block that begins to compress the spring, until the block comes to a maximum displacement During the first half of the motion, applied force transfers more energy to the
A spring lies along an x axis attached to a wall at one end and a block at the other end. The block rests on a frictionless surface at x = 0. A force of constant magnitude F is applied to the block that begins to compress the spring, until the block comes to a maximum displacement During the first half of the motion, applied force transfers more energy to the
physics-General