Maths-
General
Easy
Question
The correct answer is:
Squaring and expand the formula of sin (A+B)
Related Questions to study
Physics-
If the inclined is smooth & rod still does not slip on roller then acceleration of roller is
If the inclined is smooth & rod still does not slip on roller then acceleration of roller is
Physics-General
Physics-
A capacitor having capacitance ‘C’ is charged by a battery having e.m.f. 2V (Battery is disconnected after charging). Now this charged capacitor is connected to another battery having e.m.f. V. The positive plate of capacitor is connected with –ve terminal of battery & vice-versa. The amount of heat produced after connecting it with battery.
A capacitor having capacitance ‘C’ is charged by a battery having e.m.f. 2V (Battery is disconnected after charging). Now this charged capacitor is connected to another battery having e.m.f. V. The positive plate of capacitor is connected with –ve terminal of battery & vice-versa. The amount of heat produced after connecting it with battery.
Physics-General
Maths-
Maths-General
Physics-
A modulating signal is a square wave as shown in the figure
The carrier wave is given by The modulation index is
A modulating signal is a square wave as shown in the figure
The carrier wave is given by The modulation index is
Physics-General
Physics-
A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is The distance of the centre of mass of the system from the mass A is
A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is The distance of the centre of mass of the system from the mass A is
Physics-General
Physics-
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The maximum height h attained by the particle is
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The maximum height h attained by the particle is
Physics-General
Physics-
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The final velocity of the wedge v2 is
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The final velocity of the wedge v2 is
Physics-General
Physics-
A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is 0 when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord after it has turned through an angle is
A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is 0 when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord after it has turned through an angle is
Physics-General
Physics-
A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?
A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?
Physics-General
Physics-
Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
The minimum value of between the block M and m0 (taking horizontal surface frictionless) for which all the three blocks move together, is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
The minimum value of between the block M and m0 (taking horizontal surface frictionless) for which all the three blocks move together, is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If friction force exists between the block M and the block m0 and not between the block M and the horizontal surface, then the minimum value of for which the block m remains stationary is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If friction force exists between the block M and the block m0 and not between the block M and the horizontal surface, then the minimum value of for which the block m remains stationary is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If m0 be the coefficient of friction between the block M and the horizontal surface then the minimum value of m0 required to keep the block m stationary is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If m0 be the coefficient of friction between the block M and the horizontal surface then the minimum value of m0 required to keep the block m stationary is
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
In previous problem, the tension in the string will be
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
In previous problem, the tension in the string will be
Physics-General
Physics-
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If < min (the minimum friction required to keep the block m stationary), then the downward acceleration of m is
A block of mass M is placed on a horizontal surface and it is tied with an inextensible string to a block of mass, as shown in figure. A block of mass m0 is also placed on M
If < min (the minimum friction required to keep the block m stationary), then the downward acceleration of m is
Physics-General