Maths-
General
Easy
Question
A function f is continuous on the interval
then evaluate ratio ![fraction numerator I subscript 2 end subscript over denominator I subscript 1 end subscript end fraction]()
- p/1
The correct answer is: ![fraction numerator pi over denominator 2 end fraction]()
Related Questions to study
Maths-
Suppose A and B are two nonsingular matrices such that ![A B equals B A to the power of 2 end exponent text and end text B to the power of 5 end exponent equals I comma text then end text]()
Suppose A and B are two nonsingular matrices such that ![A B equals B A to the power of 2 end exponent text and end text B to the power of 5 end exponent equals I comma text then end text]()
Maths-General
maths-
If A is the area between the curve
and x - axis then the number of prime factors of A ![blank to the power of negative 1 end exponent text is end text]()
If A is the area between the curve
and x - axis then the number of prime factors of A ![blank to the power of negative 1 end exponent text is end text]()
maths-General
maths-
maths-General
maths-
The value of the definite Integral ![text . end text stretchy integral subscript negative 2008 end subscript superscript 2008 end superscript fraction numerator f to the power of ´ end exponent left parenthesis x right parenthesis plus f to the power of ´ end exponent left parenthesis negative x right parenthesis over denominator left parenthesis 2008 right parenthesis to the power of x end exponent plus 1 end fraction d x text equals end text]()
The value of the definite Integral ![text . end text stretchy integral subscript negative 2008 end subscript superscript 2008 end superscript fraction numerator f to the power of ´ end exponent left parenthesis x right parenthesis plus f to the power of ´ end exponent left parenthesis negative x right parenthesis over denominator left parenthesis 2008 right parenthesis to the power of x end exponent plus 1 end fraction d x text equals end text]()
maths-General
maths-
The integral
is equal to
The integral
is equal to
maths-General
maths-
A point P moves in xy – plane in such a way that
denotes the greatest integer function. Area of the region representing all possible positions of the point P is equal to
A point P moves in xy – plane in such a way that
denotes the greatest integer function. Area of the region representing all possible positions of the point P is equal to
maths-General
maths-
The value of ![stretchy integral subscript 0 end subscript superscript 1 end superscript fraction numerator l o g subscript e end subscript invisible function application left parenthesis x plus 1 right parenthesis over denominator 1 plus x to the power of 2 end exponent end fraction d x text is end text]()
The value of ![stretchy integral subscript 0 end subscript superscript 1 end superscript fraction numerator l o g subscript e end subscript invisible function application left parenthesis x plus 1 right parenthesis over denominator 1 plus x to the power of 2 end exponent end fraction d x text is end text]()
maths-General
maths-
If function f(x)
is equal to
If function f(x)
is equal to
maths-General
maths-
If
then
If
then
maths-General
maths-
Statement - I :
attain its maximum value ![text at end text x equals fraction numerator pi over denominator 3 end fraction]()
Statement - 2:
increasing function in ![open square brackets fraction numerator pi over denominator 6 end fraction comma fraction numerator pi over denominator 3 end fraction close square brackets text . end text]()
Statement - I :
attain its maximum value ![text at end text x equals fraction numerator pi over denominator 3 end fraction]()
Statement - 2:
increasing function in ![open square brackets fraction numerator pi over denominator 6 end fraction comma fraction numerator pi over denominator 3 end fraction close square brackets text . end text]()
maths-General
maths-
denotes the greatest integer function, is continuous and differentiable in (4, 6) then.
denotes the greatest integer function, is continuous and differentiable in (4, 6) then.
maths-General
maths-
denotes greatest integer function)
denotes greatest integer function)
maths-General
maths-
If graph of the function y= f(x) is continuous and passes through point (3, 1) then ![stack l i m with x rightwards arrow 3 below blank fraction numerator l n left parenthesis 3 f left parenthesis x right parenthesis minus 2 right parenthesis over denominator 2 left parenthesis 1 minus f left parenthesis x right parenthesis right parenthesis end fraction text is equal end text]()
If graph of the function y= f(x) is continuous and passes through point (3, 1) then ![stack l i m with x rightwards arrow 3 below blank fraction numerator l n left parenthesis 3 f left parenthesis x right parenthesis minus 2 right parenthesis over denominator 2 left parenthesis 1 minus f left parenthesis x right parenthesis right parenthesis end fraction text is equal end text]()
maths-General
maths-
A function f from integers to integers is defined as
then the sum of digits k is
A function f from integers to integers is defined as
then the sum of digits k is
maths-General
maths-
Let f(x)
a prime number. The number of points at which f(x) is non-differentiable is ( [.] G.I.F )
Let f(x)
a prime number. The number of points at which f(x) is non-differentiable is ( [.] G.I.F )
maths-General