Maths-
General
Easy

Question

A matrix A = (aij) m x n is said to be a square matrix if-

  1. m = n    
  2. m less or equal thann    
  3. greater or equal than n    
  4. m < n    

The correct answer is: m = n


    To find a condition for square matrix.
    For a square matrix, number of rows is equal to number of columns of a matrix.
    m=n

    Therefore, for the given matrix to be square matrix, m = n.

    Related Questions to study

    General
    Maths-

    For any square matrix A = [aij], aij = 0, when i not equal to j, then A is-

    For any square matrix A = [aij], aij = 0, when i not equal to j, then A is-

    Maths-General
    General
    maths-

    The multiplicative inverse of A =open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square bracketsis

    The multiplicative inverse of A =open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square bracketsis

    maths-General
    General
    chemistry-

     (A) and (B) are:

     (A) and (B) are:

    chemistry-General
    parallel
    General
    maths-

    A = open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets, then A3 – 4A2 – 6A is equal to -

    A = open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets, then A3 – 4A2 – 6A is equal to -

    maths-General
    General
    maths-

    Inverse of the matrix open square brackets table row 3 cell – 2 end cell cell – 1 end cell row cell – 4 end cell 1 cell – 1 end cell row 2 0 1 end table close square brackets is

    Inverse of the matrix open square brackets table row 3 cell – 2 end cell cell – 1 end cell row cell – 4 end cell 1 cell – 1 end cell row 2 0 1 end table close square brackets is

    maths-General
    General
    maths-

    If A = open square brackets table row 2 cell – 1 end cell row cell – 1 end cell 2 end table close square brackets and A2 – 4A – n I = 0, then n is equal to

    If A = open square brackets table row 2 cell – 1 end cell row cell – 1 end cell 2 end table close square brackets and A2 – 4A – n I = 0, then n is equal to

    maths-General
    parallel
    General
    maths-

    The value of x for which the matrix product open square brackets table attributes columnalign center center center columnspacing 1em end attributes row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets open square brackets table row cell – x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell – 4 x end cell cell – 2 x end cell end table close square bracketsequal an identity matrix is :

    The value of x for which the matrix product open square brackets table attributes columnalign center center center columnspacing 1em end attributes row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets open square brackets table row cell – x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell – 4 x end cell cell – 2 x end cell end table close square bracketsequal an identity matrix is :

    maths-General
    General
    maths-

    If A = open square brackets table row 1 2 row 3 5 end table close square brackets, then A–1 is equal to :

    If A = open square brackets table row 1 2 row 3 5 end table close square brackets, then A–1 is equal to :

    maths-General
    General
    maths-

    If A is a singular matrix, then adj A is :

    If A is a singular matrix, then adj A is :

    maths-General
    parallel
    General
    Maths-

    Statement - I The value of x for which (sin x + cos x)1 + sin 2x = 2, when 0 ≤ x ≤ , is straight pi divided by 4 only.

    Statement - II The maximum value of sin x + cos x occurs when x =straight pi divided by 4

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not, is same as assertion and reason.

    Statement - I The value of x for which (sin x + cos x)1 + sin 2x = 2, when 0 ≤ x ≤ , is straight pi divided by 4 only.

    Statement - II The maximum value of sin x + cos x occurs when x =straight pi divided by 4

    Maths-General

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not, is same as assertion and reason.

    General
    maths-

    If [1 2 3 ]A = [4 5], the order of matrix A is :

    If [1 2 3 ]A = [4 5], the order of matrix A is :

    maths-General
    General
    maths-

    Let A and B be 3 × 3 matrices, then AB = O implies:

    Let A and B be 3 × 3 matrices, then AB = O implies:

    maths-General
    parallel
    General
    maths-

    If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square brackets and X is a matrix such that A = B X. Then X equals

    If A = open square brackets table row 1 2 row 3 cell negative 5 end cell end table close square brackets, B = open square brackets table row 1 0 row 0 2 end table close square brackets and X is a matrix such that A = B X. Then X equals

    maths-General
    General
    maths-

    If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to

    If k open square brackets table row cell negative 1 end cell 2 2 row 2 cell negative 1 end cell 2 row 2 2 cell negative 1 end cell end table close square brackets is an orthogonal matrix then k is equal to

    maths-General
    General
    maths-

    If f(α) = open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets and alpha comma beta comma gamma are angles of triangle then f(alpha). f(beta).f (gamma) =

    If f(α) = open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets and alpha comma beta comma gamma are angles of triangle then f(alpha). f(beta).f (gamma) =

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.