Maths-
General
Easy

Question

If a, b, c are the three natural numbers such that a + b + c is divisible by 6, then a3 + b3 + c3 must be divisible by -

  1. 6    
  2. 12    
  3. 24    
  4. None of these    

The correct answer is: 6


    We have (a3 – a) + (b3 – b) + (c3 – c)
    = (a – 1) (a) (a + 1) + (b – 1) (b) (b + 1) + (c – 1) (c) (c + 1)
    Since (x – 1) x (x + 1) is divisible both 2 & 3, it is divisible by 6. Thus,
    6 | {(a3 – a) + (b3 – b) + (c3 – c)}
    rightwards double arrow6 | (a3 + b3 + c3) as 6|(a + b + c).

    Related Questions to study

    General
    maths-

    For x element of R, let [x] denote the greatest integer less or equal than x, then value ofopen square brackets negative fraction numerator 1 over denominator 3 end fraction close square brackets+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 1 over denominator 100 end fraction close square brackets+ open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 2 over denominator 100 end fraction close square brackets+…+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 99 over denominator 100 end fraction close square bracketsis -

    For x element of R, let [x] denote the greatest integer less or equal than x, then value ofopen square brackets negative fraction numerator 1 over denominator 3 end fraction close square brackets+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 1 over denominator 100 end fraction close square brackets+ open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 2 over denominator 100 end fraction close square brackets+…+open square brackets negative fraction numerator 1 over denominator 3 end fraction minus fraction numerator 99 over denominator 100 end fraction close square bracketsis -

    maths-General
    General
    maths-

    The number of integral solutions of the equation x + y + z = 24 subjected to conditions that 1 less or equal thanless or equal than 5, 12 less or equal thanless or equal than 18, z less or equal than –1

    The number of integral solutions of the equation x + y + z = 24 subjected to conditions that 1 less or equal thanless or equal than 5, 12 less or equal thanless or equal than 18, z less or equal than –1

    maths-General
    General
    maths-

    Ravish write letters to his five friends and address the corresponding envelopes. In how many ways can the letters be placed in the envelopes so that at least two of them are in the wrong envelopes -

    Ravish write letters to his five friends and address the corresponding envelopes. In how many ways can the letters be placed in the envelopes so that at least two of them are in the wrong envelopes -

    maths-General
    parallel
    General
    maths-

    In how many ways can we get a sum of at most 17 by throwing six distinct dice -

    In how many ways can we get a sum of at most 17 by throwing six distinct dice -

    maths-General
    General
    maths-

    The number of non negative integral solutions of equation 3x + y + z = 24

    The number of non negative integral solutions of equation 3x + y + z = 24

    maths-General
    General
    maths-

    Sum of divisors of 25 ·37 ·53 · 72 is –

    Sum of divisors of 25 ·37 ·53 · 72 is –

    maths-General
    parallel
    General
    maths-

    The length of the perpendicular from the pole to the straight line fraction numerator 6 square root of 2 over denominator r end fraction equals C o s space theta plus S i n space theta is

    The length of the perpendicular from the pole to the straight line fraction numerator 6 square root of 2 over denominator r end fraction equals C o s space theta plus S i n space theta is

    maths-General
    General
    maths-

    The condition for the lines c subscript 1 over r equals a subscript 1 c o s space theta plus b subscript 1 s i n space theta and c subscript 2 over r equals a subscript 2 c o s space theta plus b subscript 2 s i n space theta to be perpendicular is

    The condition for the lines c subscript 1 over r equals a subscript 1 c o s space theta plus b subscript 1 s i n space theta and c subscript 2 over r equals a subscript 2 c o s space theta plus b subscript 2 s i n space theta to be perpendicular is

    maths-General
    General
    Maths-

    If f : R →R; f(x) = sin x + x, then the value of not stretchy integral subscript 0 end subscript superscript pi end superscript blank (f-1 (x)) dx, is equal to

    Here we used the concept of integration and the inverse functions to solve the question. Finding an antiderivative of a function is the procedure known as integration. The process of adding the slices to complete it is comparable. The process of integration is the opposite of that of differentiation. So the final answer is straight pi squared over 2 minus 2.

    If f : R →R; f(x) = sin x + x, then the value of not stretchy integral subscript 0 end subscript superscript pi end superscript blank (f-1 (x)) dx, is equal to

    Maths-General

    Here we used the concept of integration and the inverse functions to solve the question. Finding an antiderivative of a function is the procedure known as integration. The process of adding the slices to complete it is comparable. The process of integration is the opposite of that of differentiation. So the final answer is straight pi squared over 2 minus 2.

    parallel
    General
    maths-

    The polar equation of the straight line with intercepts 'a' and 'b' on the rays theta equals 0 and theta equals fraction numerator pi over denominator 2 end fraction respectively is

    The polar equation of the straight line with intercepts 'a' and 'b' on the rays theta equals 0 and theta equals fraction numerator pi over denominator 2 end fraction respectively is

    maths-General
    General
    maths-

    The polar equation of the straight line parallel to the initial line and at a distance of 4 units above the initial line is

    The polar equation of the straight line parallel to the initial line and at a distance of 4 units above the initial line is

    maths-General
    General
    maths-

    The polar equation of x to the power of 3 end exponent plus y to the power of 3 end exponent equals 3 axy is

    The polar equation of x to the power of 3 end exponent plus y to the power of 3 end exponent equals 3 axy is

    maths-General
    parallel
    General
    maths-

    If x, y, z are integers and x greater or equal than 0, y greater or equal than 1, z greater or equal than 2, x + y + z = 15, then the number of values of the ordered triplet (x, y, z) is -

    If x, y, z are integers and x greater or equal than 0, y greater or equal than 1, z greater or equal than 2, x + y + z = 15, then the number of values of the ordered triplet (x, y, z) is -

    maths-General
    General
    Maths-

    If alpha not equal to beta comma alpha 2 equals 5 alpha minus 3 comma beta 2 times equals 5 beta minus 3 commathen the equation whose roots are alpha divided by beta straight & beta divided by alpha

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, the equation is 3 x squared minus 19 x plus 3 equals 0.

    If alpha not equal to beta comma alpha 2 equals 5 alpha minus 3 comma beta 2 times equals 5 beta minus 3 commathen the equation whose roots are alpha divided by beta straight & beta divided by alpha

    Maths-General

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, the equation is 3 x squared minus 19 x plus 3 equals 0.

    General
    Maths-

    Let p, q element of {1, 2, 3, 4}. Then number of equation of the form px2 + qx + 1 = 0, having real roots, is

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, total 7 seven solutions are possible so 7 equations can be formed.

    Let p, q element of {1, 2, 3, 4}. Then number of equation of the form px2 + qx + 1 = 0, having real roots, is

    Maths-General

    Here we used the concept of quadratic equations and solved the problem. We also understood the concept of discriminant and used it in the solution to find the intervals. Therefore, total 7 seven solutions are possible so 7 equations can be formed.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.