Maths-
General
Easy

Question

If A =open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets, then A2 equals-

  1. open square brackets table row cell cos invisible function application 2 alpha end cell cell sin invisible function application 2 alpha end cell row cell negative sin invisible function application 2 alpha end cell cell cos invisible function application 2 alpha end cell end table close square brackets    
  2. open square brackets table row cell cos invisible function application 2 alpha end cell cell negative sin invisible function application 2 alpha end cell row cell sin invisible function application 2 alpha end cell cell cos invisible function application 2 alpha end cell end table close square brackets    
  3. open square brackets table row cell sin invisible function application 2 alpha end cell cell cos invisible function application 2 alpha end cell row cell negative cos invisible function application 2 alpha end cell cell sin invisible function application 2 alpha end cell end table close square brackets    
  4. open square brackets table row 1 0 row 0 1 end table close square brackets    

The correct answer is: open square brackets table row cell cos invisible function application 2 alpha end cell cell sin invisible function application 2 alpha end cell row cell negative sin invisible function application 2 alpha end cell cell cos invisible function application 2 alpha end cell end table close square brackets


    To find the value of A squared for the given matrix A.

    Given A =open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets.
    A squared = open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets x open square brackets table row cell cos invisible function application alpha end cell cell sin invisible function application alpha end cell row cell negative sin invisible function application alpha end cell cell cos invisible function application alpha end cell end table close square brackets
    =open square brackets table row cell cos invisible function application 2 alpha end cell cell sin invisible function application 2 alpha end cell row cell negative sin invisible function application 2 alpha end cell cell cos invisible function application 2 alpha end cell end table close square brackets

    Therefore, using matrix multiplication, A squared = =open square brackets table row cell cos invisible function application 2 alpha end cell cell sin invisible function application 2 alpha end cell row cell negative sin invisible function application 2 alpha end cell cell cos invisible function application 2 alpha end cell end table close square brackets

    Related Questions to study

    General
    Maths-

    The root of the equation [x 1 2] open square brackets table attributes columnalign left left left columnspacing 1em end attributes row cell 0      1      1 end cell row cell 1      0      1 end cell row cell 1      1      0 end cell end table close square brackets open square brackets table row x row cell negative 1 end cell row 1 end table close square brackets = 0 is-

    The root of the equation [x 1 2] open square brackets table attributes columnalign left left left columnspacing 1em end attributes row cell 0      1      1 end cell row cell 1      0      1 end cell row cell 1      1      0 end cell end table close square brackets open square brackets table row x row cell negative 1 end cell row 1 end table close square brackets = 0 is-

    Maths-General
    General
    Maths-

    If A = open square brackets table row 3 1 row 7 5 end table close square brackets and A2 + kI = 8A, then k equals

    If A = open square brackets table row 3 1 row 7 5 end table close square brackets and A2 + kI = 8A, then k equals

    Maths-General
    General
    Maths-

    If A and B are matrices of order m × n and n × n respectively, then which of the following are defined-

    If A and B are matrices of order m × n and n × n respectively, then which of the following are defined-

    Maths-General
    parallel
    General
    chemistry-

    the products (A) and (B) are:

    the products (A) and (B) are:

    chemistry-General
    General
    Maths-

    A matrix A = (aij) m x n is said to be a square matrix if-

    A matrix A = (aij) m x n is said to be a square matrix if-

    Maths-General
    General
    Maths-

    For any square matrix A = [aij], aij = 0, when i not equal to j, then A is-

    For any square matrix A = [aij], aij = 0, when i not equal to j, then A is-

    Maths-General
    parallel
    General
    maths-

    The multiplicative inverse of A =open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square bracketsis

    The multiplicative inverse of A =open square brackets table row cell cos invisible function application theta end cell cell negative sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square bracketsis

    maths-General
    General
    chemistry-

     (A) and (B) are:

     (A) and (B) are:

    chemistry-General
    General
    maths-

    A = open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets, then A3 – 4A2 – 6A is equal to -

    A = open square brackets table row 1 2 2 row 2 1 2 row 2 2 1 end table close square brackets, then A3 – 4A2 – 6A is equal to -

    maths-General
    parallel
    General
    maths-

    Inverse of the matrix open square brackets table row 3 cell – 2 end cell cell – 1 end cell row cell – 4 end cell 1 cell – 1 end cell row 2 0 1 end table close square brackets is

    Inverse of the matrix open square brackets table row 3 cell – 2 end cell cell – 1 end cell row cell – 4 end cell 1 cell – 1 end cell row 2 0 1 end table close square brackets is

    maths-General
    General
    maths-

    If A = open square brackets table row 2 cell – 1 end cell row cell – 1 end cell 2 end table close square brackets and A2 – 4A – n I = 0, then n is equal to

    If A = open square brackets table row 2 cell – 1 end cell row cell – 1 end cell 2 end table close square brackets and A2 – 4A – n I = 0, then n is equal to

    maths-General
    General
    maths-

    The value of x for which the matrix product open square brackets table attributes columnalign center center center columnspacing 1em end attributes row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets open square brackets table row cell – x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell – 4 x end cell cell – 2 x end cell end table close square bracketsequal an identity matrix is :

    The value of x for which the matrix product open square brackets table attributes columnalign center center center columnspacing 1em end attributes row 2 0 7 row 0 1 0 row 1 cell negative 2 end cell 1 end table close square brackets open square brackets table row cell – x end cell cell 14 x end cell cell 7 x end cell row 0 1 0 row x cell – 4 x end cell cell – 2 x end cell end table close square bracketsequal an identity matrix is :

    maths-General
    parallel
    General
    maths-

    If A = open square brackets table row 1 2 row 3 5 end table close square brackets, then A–1 is equal to :

    If A = open square brackets table row 1 2 row 3 5 end table close square brackets, then A–1 is equal to :

    maths-General
    General
    maths-

    If A is a singular matrix, then adj A is :

    If A is a singular matrix, then adj A is :

    maths-General
    General
    Maths-

    Statement - I The value of x for which (sin x + cos x)1 + sin 2x = 2, when 0 ≤ x ≤ , is straight pi divided by 4 only.

    Statement - II The maximum value of sin x + cos x occurs when x =straight pi divided by 4

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not, is same as assertion and reason.

    Statement - I The value of x for which (sin x + cos x)1 + sin 2x = 2, when 0 ≤ x ≤ , is straight pi divided by 4 only.

    Statement - II The maximum value of sin x + cos x occurs when x =straight pi divided by 4

    Maths-General

    In this question, we have to find the statements are the correct or not and statement 2 is correct explanation or not, is same as assertion and reason.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.