Maths-
General
Easy

Question

L subscript x rightwards arrow 0 end subscript fraction numerator 3 to the power of t end exponent minus 1 over denominator square root of 1 plus x end root minus 1 end fraction

  1. 2 l o g cubed    
  2. 3 l o g squared    
  3. l o g squared    
  4. l o g squared    

The correct answer is: 2 l o g cubed


    table row cell L t subscript x rightwards arrow 0 end subscript invisible function application fraction numerator 3 to the power of x end exponent minus 1 over denominator square root of 1 plus x end root minus 1 end fraction cross times fraction numerator square root of 1 plus x end root plus 1 over denominator square root of 1 plus x end root minus 1 end fraction end cell row cell equals L subscript x rightwards arrow 0 end subscript fraction numerator 3 to the power of x end exponent minus 1 over denominator x end fraction cross times L t subscript x rightwards arrow 0 end subscript invisible function application left parenthesis square root of 1 plus x end root plus 1 right parenthesis end cell row cell equals l o g invisible function application 3 left parenthesis square root of 1 plus 0 end root plus 1 right parenthesis equals 2 l o g invisible function application 3 end cell end table

    Related Questions to study

    General
    physics-

    A copper wire of length 4 m and area of cross-section 1.2 cm2 is stretched with a force of  8 cross times 10 cubed straight N If young's modulus for copper is 1.2 cross times 10 to the power of 11 straight N over straight m squared  What will be the length increase of the wire?

    A copper wire of length 4 m and area of cross-section 1.2 cm2 is stretched with a force of  8 cross times 10 cubed straight N If young's modulus for copper is 1.2 cross times 10 to the power of 11 straight N over straight m squared  What will be the length increase of the wire?

    physics-General
    General
    Maths-

    Lt subscript y not stretchy rightwards arrow 0 end subscript space fraction numerator sin begin display style space end style left parenthesis a plus b x right parenthesis minus sin space left parenthesis a minus b x right parenthesis over denominator x end fraction

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    Lt subscript y not stretchy rightwards arrow 0 end subscript space fraction numerator sin begin display style space end style left parenthesis a plus b x right parenthesis minus sin space left parenthesis a minus b x right parenthesis over denominator x end fraction

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    General
    physics-

    What will be the nature of change in internal energy in case of processes shown below?

    What will be the nature of change in internal energy in case of processes shown below?

    physics-General
    parallel
    General
    maths-

    Lt subscript x plus x over 2 end subscript space fraction numerator cos begin display style space end style x over denominator x minus pi over 2 end fraction

    Lt subscript x plus x over 2 end subscript space fraction numerator cos begin display style space end style x over denominator x minus pi over 2 end fraction

    maths-General
    General
    physics-

    Young's modulus of rubber is  10 to the power of 4 straight N over straight m squared and area of cross section is 2 cm2 if force of 2 cross times 10 to the power of 5 dyne is applied along its length then its initial length L becomes….

    Young's modulus of rubber is  10 to the power of 4 straight N over straight m squared and area of cross section is 2 cm2 if force of 2 cross times 10 to the power of 5 dyne is applied along its length then its initial length L becomes….

    physics-General
    General
    Maths-

    L t subscript x not stretchy rightwards arrow 1 end subscript fraction numerator log subscript e superscript x over denominator x minus 1 end fraction

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    L t subscript x not stretchy rightwards arrow 1 end subscript fraction numerator log subscript e superscript x over denominator x minus 1 end fraction

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    parallel
    General
    Maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus sin space x minus 1 over denominator x end fraction

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction'

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator e to the power of x minus sin space x minus 1 over denominator x end fraction

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction'

    General
    Maths-

    Lt subscript x not stretchy rightwards arrow 4 end subscript fraction numerator a to the power of x minus 1 over denominator b to the power of x minus 1 end fraction left parenthesis a greater than 0 comma b greater than 0 comma b not equal to 1 right parenthesis

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    Lt subscript x not stretchy rightwards arrow 4 end subscript fraction numerator a to the power of x minus 1 over denominator b to the power of x minus 1 end fraction left parenthesis a greater than 0 comma b greater than 0 comma b not equal to 1 right parenthesis

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    General
    physics-

    PV versus T graph of equal masses of H subscript 2 end subscript , He and C O subscript 2 end subscript is shown in figure Choose the correct alternative

    PV versus T graph of equal masses of H subscript 2 end subscript , He and C O subscript 2 end subscript is shown in figure Choose the correct alternative

    physics-General
    parallel
    General
    maths-

    If pi less than alpha less than 2 pi then fraction numerator 1 over denominator S i n invisible function application alpha minus square root of c o t to the power of 2 end exponent invisible function application alpha minus c o s to the power of 2 end exponent invisible function application alpha end root end fraction equals

    If pi less than alpha less than 2 pi then fraction numerator 1 over denominator S i n invisible function application alpha minus square root of c o t to the power of 2 end exponent invisible function application alpha minus c o s to the power of 2 end exponent invisible function application alpha end root end fraction equals

    maths-General
    General
    Maths-

    Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator e to the power of x minus 1 over denominator square root of 1 plus x end root minus 1 end fraction

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction .

    Lt subscript x not stretchy rightwards arrow 0 end subscript space fraction numerator e to the power of x minus 1 over denominator square root of 1 plus x end root minus 1 end fraction

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means fraction numerator 0 over denominator 0 space end fraction space o r space fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction .

    General
    Maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator square root of x plus 1 end root minus 1 over denominator x end fraction

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator square root of x plus 1 end root minus 1 over denominator x end fraction

    Maths-General
    parallel
    General
    maths-

    If X equals S i n invisible function application 1 semicolon Y equals S i n invisible function application 2 semicolon Z equals S i n invisible function application 3  then

    If X equals S i n invisible function application 1 semicolon Y equals S i n invisible function application 2 semicolon Z equals S i n invisible function application 3  then

    maths-General
    General
    Maths-

    Lt subscript x not stretchy rightwards arrow 4 end subscript space fraction numerator square root of x minus 2 over denominator x minus 4 end fraction

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    Lt subscript x not stretchy rightwards arrow 4 end subscript space fraction numerator square root of x minus 2 over denominator x minus 4 end fraction

    Maths-General

    We can only apply the L’Hospital’s rule if the direct substitution returns an indeterminate form, that means 0 over 0 or fraction numerator plus-or-minus infinity over denominator plus-or-minus infinity end fraction.

    General
    Maths-

    fraction numerator s i n invisible function application 3 theta over denominator 1 plus 2 c o s invisible function application 2 theta end fraction equals

    Hence Choice 4 is correct

    fraction numerator s i n invisible function application 3 theta over denominator 1 plus 2 c o s invisible function application 2 theta end fraction equals

    Maths-General

    Hence Choice 4 is correct

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.