Maths-
General
Easy

Question

Let u(x) be a twice differenctiable function defined in 0 less or equal than x less or equal than 1 comma holds the relation u to the power of ´ ´ end exponent left parenthesis x right parenthesis equals e to the power of x end exponent u left parenthesis x right parenthesis text  in  end text x element of left square bracket 01 right square bracket. text  If  end text 0 less than x subscript 0 end subscript less than 1 comma then

  1. u(x) can’t have a positive local maximum at x0    
  2. u(x) can’t have a negative local maximum at x0    
  3. u(x) can’t have a positive local minimum at x0    
  4. u(x) can’t have any local maximum or minima at x0    

The correct answer is: u(x) can’t have a positive local maximum at x0


    Related Questions to study

    General
    maths-

    If f open parentheses x close parentheses equals fraction numerator x to the power of 2 end exponent minus 1 over denominator x to the power of 2 end exponent plus 1 end fraction comma for every real number, then minimum value of f

    If f open parentheses x close parentheses equals fraction numerator x to the power of 2 end exponent minus 1 over denominator x to the power of 2 end exponent plus 1 end fraction comma for every real number, then minimum value of f

    maths-General
    General
    maths-

    The maximum value of the function f left parenthesis x right parenthesis equals fraction numerator left parenthesis 1 plus x right parenthesis to the power of 0.6 end exponent over denominator 1 plus x to the power of 0.6 end exponent end fraction in the interval [0, 1] is

    The maximum value of the function f left parenthesis x right parenthesis equals fraction numerator left parenthesis 1 plus x right parenthesis to the power of 0.6 end exponent over denominator 1 plus x to the power of 0.6 end exponent end fraction in the interval [0, 1] is

    maths-General
    General
    maths-

    How many real values of x satisfy the inequaligy e to the power of x end exponent less or equal than x plus 1?

    How many real values of x satisfy the inequaligy e to the power of x end exponent less or equal than x plus 1?

    maths-General
    parallel
    General
    maths-

    If f(x) is a differentiable real valued function satisfying f to the power of ´ ´ end exponent left parenthesis x right parenthesis minus 3 f to the power of ´ end exponent left parenthesis x right parenthesis greater than 3 for all x greater or equal than 0 and f to the power of ´ left parenthesis 0 right parenthesis equals negative 1 comma then f left parenthesis x right parenthesis plus x for all x greater than 0 is

    If f(x) is a differentiable real valued function satisfying f to the power of ´ ´ end exponent left parenthesis x right parenthesis minus 3 f to the power of ´ end exponent left parenthesis x right parenthesis greater than 3 for all x greater or equal than 0 and f to the power of ´ left parenthesis 0 right parenthesis equals negative 1 comma then f left parenthesis x right parenthesis plus x for all x greater than 0 is

    maths-General
    General
    Maths-

    If the function f left parenthesis x right parenthesis equals c o s invisible function application vertical line x vertical line minus 2 a x plus b increases along the entire number scale, the range of value of a is given by

    If the function f left parenthesis x right parenthesis equals c o s invisible function application vertical line x vertical line minus 2 a x plus b increases along the entire number scale, the range of value of a is given by

    Maths-General
    General
    maths-

    Let f left parenthesis x right parenthesis equals fraction numerator ln invisible function application x over denominator x end fraction for all x greater than 0 comma then
    Statement-1: f open parentheses fraction numerator 5 over denominator 2 end fraction close parentheses greater than f open parentheses fraction numerator 9 over denominator 2 end fraction close parentheses because
    Statement 2 : f open parentheses x subscript 1 end subscript close parentheses greater than f open parentheses x subscript 2 end subscript close parentheses for all x subscript 1 end subscript element of open parentheses 2 comma 4 close parentheses text  and  end text x subscript 2 end subscript element of open parentheses 0 comma 2 close parentheses union open parentheses 4 comma infinity close parentheses

    Let f left parenthesis x right parenthesis equals fraction numerator ln invisible function application x over denominator x end fraction for all x greater than 0 comma then
    Statement-1: f open parentheses fraction numerator 5 over denominator 2 end fraction close parentheses greater than f open parentheses fraction numerator 9 over denominator 2 end fraction close parentheses because
    Statement 2 : f open parentheses x subscript 1 end subscript close parentheses greater than f open parentheses x subscript 2 end subscript close parentheses for all x subscript 1 end subscript element of open parentheses 2 comma 4 close parentheses text  and  end text x subscript 2 end subscript element of open parentheses 0 comma 2 close parentheses union open parentheses 4 comma infinity close parentheses

    maths-General
    parallel
    General
    maths-

    If f(x) is a polynomial function such that f open parentheses x close parentheses f open parentheses fraction numerator 1 over denominator x end fraction close parentheses equals f open parentheses x close parentheses plus f open parentheses fraction numerator 1 over denominator x end fraction close parentheses for all non zero real values of x and f(4) = -15 then f(3) + f(-3) =

    If f(x) is a polynomial function such that f open parentheses x close parentheses f open parentheses fraction numerator 1 over denominator x end fraction close parentheses equals f open parentheses x close parentheses plus f open parentheses fraction numerator 1 over denominator x end fraction close parentheses for all non zero real values of x and f(4) = -15 then f(3) + f(-3) =

    maths-General
    General
    maths-

    The total number of solutions of left square bracket x right square bracket to the power of 2 end exponent equals x plus 2 open curly brackets x close curly brackets comma where [.] and {.} denote greatest integer function and fractional part, respectively is equal to

    The total number of solutions of left square bracket x right square bracket to the power of 2 end exponent equals x plus 2 open curly brackets x close curly brackets comma where [.] and {.} denote greatest integer function and fractional part, respectively is equal to

    maths-General
    General
    maths-

    Let f left parenthesis x right parenthesis equals x left square bracket x right square bracket where left square bracket x right square bracket denotes the greatest integer smaller than or equal to x. When x is not an integer, what is f’ (x) ?

    Let f left parenthesis x right parenthesis equals x left square bracket x right square bracket where left square bracket x right square bracket denotes the greatest integer smaller than or equal to x. When x is not an integer, what is f’ (x) ?

    maths-General
    parallel
    General
    maths-

    For x comma y element of R comma f left parenthesis x plus y right parenthesis equals f left parenthesis x right parenthesis f left parenthesis y right parenthesis with f(1) = 2 If stretchy sum from k equals 1 to n of   f left parenthesis a plus k right parenthesis equals 480 comma then the ordered pair (a, n) is

    For x comma y element of R comma f left parenthesis x plus y right parenthesis equals f left parenthesis x right parenthesis f left parenthesis y right parenthesis with f(1) = 2 If stretchy sum from k equals 1 to n of   f left parenthesis a plus k right parenthesis equals 480 comma then the ordered pair (a, n) is

    maths-General
    General
    maths-

    Let f left parenthesis x right parenthesis equals m a x times left curly bracket 1 plus s i n invisible function application x comma 1 minus c o s invisible function application x right curly bracket comma x element of left square bracket 0 comma 2 pi right square bracket and g left parenthesis x right parenthesis equals m a x times left curly bracket 1 comma vertical line x minus 1 vertical line right curly bracket for all x element of R comma then

    Let f left parenthesis x right parenthesis equals m a x times left curly bracket 1 plus s i n invisible function application x comma 1 minus c o s invisible function application x right curly bracket comma x element of left square bracket 0 comma 2 pi right square bracket and g left parenthesis x right parenthesis equals m a x times left curly bracket 1 comma vertical line x minus 1 vertical line right curly bracket for all x element of R comma then

    maths-General
    General
    maths-

    If functions f colon left curly bracket 1 comma 2 comma comma horizontal ellipsis comma n right curly bracket rightwards arrow left curly bracket 1995 comma 1996 right curly bracket satisfying f left parenthesis 1 right parenthesis plus f left parenthesis 2 right parenthesis plus horizontal ellipsis plus f left parenthesis 1996 right parenthesis equals text  odd end text integer, are formed, then number of such functions can be

    If functions f colon left curly bracket 1 comma 2 comma comma horizontal ellipsis comma n right curly bracket rightwards arrow left curly bracket 1995 comma 1996 right curly bracket satisfying f left parenthesis 1 right parenthesis plus f left parenthesis 2 right parenthesis plus horizontal ellipsis plus f left parenthesis 1996 right parenthesis equals text  odd end text integer, are formed, then number of such functions can be

    maths-General
    parallel
    General
    maths-

    Let f open parentheses x close parentheses equals fraction numerator 2 alpha x over denominator 2 x plus 1 end fraction comma x not equal to negative 1 half.Then f(f(x)) = x if α =

    Let f open parentheses x close parentheses equals fraction numerator 2 alpha x over denominator 2 x plus 1 end fraction comma x not equal to negative 1 half.Then f(f(x)) = x if α =

    maths-General
    General
    maths-

    A = (1,2,3,4,5), B = (1,2,3,4) and f colon A @ B is a function. Then

    A = (1,2,3,4,5), B = (1,2,3,4) and f colon A @ B is a function. Then

    maths-General
    General
    maths-

    The range of the function f open parentheses x close parentheses equals sin to the power of negative 1 end exponent invisible function application open square brackets x to the power of 2 end exponent plus fraction numerator 1 over denominator 2 end fraction close square brackets plus cos to the power of negative 1 end exponent invisible function application open square brackets x to the power of 2 end exponent minus fraction numerator 1 over denominator 2 end fraction close square brackets comma when [.] is the greatest integer function, is

    The range of the function f open parentheses x close parentheses equals sin to the power of negative 1 end exponent invisible function application open square brackets x to the power of 2 end exponent plus fraction numerator 1 over denominator 2 end fraction close square brackets plus cos to the power of negative 1 end exponent invisible function application open square brackets x to the power of 2 end exponent minus fraction numerator 1 over denominator 2 end fraction close square brackets comma when [.] is the greatest integer function, is

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.