Maths-
General
Easy

Question

Statement-I : Cot to the power of negative 1 end exponent invisible function application open parentheses x close parentheses minus tan to the power of negative 1 end exponent invisible function application open parentheses x close parentheses greater than 0 text  for all  end text x less than 1
Statement-II : Graph of c o t to the power of negative 1 end exponent invisible function application left parenthesis x right parenthesis is always above the graph of t a n to the power of negative 1 end exponent invisible function application left parenthesis x right parenthesis text  for all  end text x less than 1 text  . end text

  1. Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I    
  2. Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I    
  3. Statement-I is true, statement-II is false.    
  4. Statement-I is false, statement-II is true    

The correct answer is: Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I

Related Questions to study

General
Maths-

If c o s to the power of negative 1 end exponent invisible function application x minus c o s to the power of negative 1 end exponent invisible function application fraction numerator y over denominator 2 end fraction equals alpha comma then 4 x to the power of 2 end exponent minus 4 x y c o s invisible function application alpha plus y to the power of 2 end exponent text end textis equal to-

If c o s to the power of negative 1 end exponent invisible function application x minus c o s to the power of negative 1 end exponent invisible function application fraction numerator y over denominator 2 end fraction equals alpha comma then 4 x to the power of 2 end exponent minus 4 x y c o s invisible function application alpha plus y to the power of 2 end exponent text end textis equal to-

Maths-General
General
Maths-

The solution of the equation 2 c o s to the power of negative 1 end exponent invisible function application x equals s i n to the power of negative 1 end exponent invisible function application open parentheses 2 x square root of 1 minus x to the power of 2 end exponent end root close parentheses

The solution of the equation 2 c o s to the power of negative 1 end exponent invisible function application x equals s i n to the power of negative 1 end exponent invisible function application open parentheses 2 x square root of 1 minus x to the power of 2 end exponent end root close parentheses

Maths-General
General
Maths-

The solution of the inequality open parentheses tan to the power of negative 1 end exponent invisible function application x close parentheses to the power of 2 end exponent minus 3 t a n to the power of negative 1 end exponent invisible function application x plus 2 greater or equal than 0 text  is - end text

The solution of the inequality open parentheses tan to the power of negative 1 end exponent invisible function application x close parentheses to the power of 2 end exponent minus 3 t a n to the power of negative 1 end exponent invisible function application x plus 2 greater or equal than 0 text  is - end text

Maths-General
parallel
General
Maths-

The value of taninvisible function application open square brackets s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 3 over denominator 5 end fraction close parentheses plus t a n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 over denominator 3 end fraction close parentheses close square brackets is

The value of taninvisible function application open square brackets s i n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 3 over denominator 5 end fraction close parentheses plus t a n to the power of negative 1 end exponent invisible function application open parentheses fraction numerator 2 over denominator 3 end fraction close parentheses close square brackets is

Maths-General
General
Maths-

The image of the interval [- 1, 3] under the mapping specified by the function f left parenthesis x right parenthesis equals 4 x to the power of 3 end exponent minus 12 x text end textis :

Hence the correct option in  [-8,72]

The image of the interval [- 1, 3] under the mapping specified by the function f left parenthesis x right parenthesis equals 4 x to the power of 3 end exponent minus 12 x text end textis :

Maths-General

Hence the correct option in  [-8,72]

General
maths-

Let f(x)equals fraction numerator X over denominator 1 plus x end fraction defined from left parenthesis 0 comma infinity right parenthesis rightwards arrow left square bracket 0 comma infinity right parenthesis, then by f(x) is -

Let f(x)equals fraction numerator X over denominator 1 plus x end fraction defined from left parenthesis 0 comma infinity right parenthesis rightwards arrow left square bracket 0 comma infinity right parenthesis, then by f(x) is -

maths-General
parallel
General
Maths-

If f : R rightwards arrow R is a function defined by f(x) = [x] c o s invisible function application pi open parentheses fraction numerator 2 x minus 1 over denominator 2 end fraction close parentheses, where [x] denotes the greatest integer function, then f is :

The correct answer is choice 2

If f : R rightwards arrow R is a function defined by f(x) = [x] c o s invisible function application pi open parentheses fraction numerator 2 x minus 1 over denominator 2 end fraction close parentheses, where [x] denotes the greatest integer function, then f is :

Maths-General

The correct answer is choice 2

General
Maths-

Let ƒ : (–1, 1) rightwards arrow B, be a function defined by ƒ(x) equals t a n to the power of negative 1 end exponent invisible function application fraction numerator 2 x over denominator 1 minus x to the power of 2 end exponent end fraction comma then ƒ is both one-one and onto when B is the interval-

Hence, the range of the given function is open parentheses negative straight pi over 2 comma straight pi over 2 close parentheses.

Let ƒ : (–1, 1) rightwards arrow B, be a function defined by ƒ(x) equals t a n to the power of negative 1 end exponent invisible function application fraction numerator 2 x over denominator 1 minus x to the power of 2 end exponent end fraction comma then ƒ is both one-one and onto when B is the interval-

Maths-General

Hence, the range of the given function is open parentheses negative straight pi over 2 comma straight pi over 2 close parentheses.

General
Maths-

The range of the function f left parenthesis x right parenthesis equals fraction numerator 2 plus x over denominator 2 minus x end fraction comma x not equal to 2 text end textis-

Hence, range of the given function will be R{1}

The range of the function f left parenthesis x right parenthesis equals fraction numerator 2 plus x over denominator 2 minus x end fraction comma x not equal to 2 text end textis-

Maths-General

Hence, range of the given function will be R{1}

parallel
General
Maths-

A function whose graph is symmetrical about the origin is given by -

Hence, the function f(x+y)=f(x)+f(y) is symmetric about the origin.

A function whose graph is symmetrical about the origin is given by -

Maths-General

Hence, the function f(x+y)=f(x)+f(y) is symmetric about the origin.

General
Maths-

The minimum value of f left parenthesis x right parenthesis equals vertical line 3 minus x vertical line plus vertical line 2 plus x vertical line plus vertical line 5 minus x vertical line is

The minimum value of f left parenthesis x right parenthesis equals vertical line 3 minus x vertical line plus vertical line 2 plus x vertical line plus vertical line 5 minus x vertical line is

Maths-General
General
Maths-

f colon left square bracket negative 1 , 1 right square bracket rightwards arrow left square bracket negative 1 , 2 right square bracket comma f left parenthesis x right parenthesis equals x plus vertical line x vertical line comma is -

Hence, the given function is many one and onto.

f colon left square bracket negative 1 , 1 right square bracket rightwards arrow left square bracket negative 1 , 2 right square bracket comma f left parenthesis x right parenthesis equals x plus vertical line x vertical line comma is -

Maths-General

Hence, the given function is many one and onto.

parallel
General
Maths-

If f(x) is a polynomial function satisfying the condition f(x). f(1/x) = f(x) + f(1/x) and f(2) = 9 then -

If f(x) is a polynomial function satisfying the condition f(x). f(1/x) = f(x) + f(1/x) and f(2) = 9 then -

Maths-General
General
General

Fill in the blank with the appropriate transition.
The movie managed to fetch decent collections ______ all the negative reviews it received.
 

Fill in the blank with the appropriate transition.
The movie managed to fetch decent collections ______ all the negative reviews it received.
 

GeneralGeneral
General
Maths-

If R be a relation '<' from A = {1, 2, 3, 4} to B = {1, 3, 5} i.e. (a, b) element of R iff a < b, then R O R to the power of negative 1 end exponent text end textis text-end text

Values of R O R to the power of negative 1 end exponent text end text are {(3, 3), (3, 5), (5, 3), (5, 5)}

If R be a relation '<' from A = {1, 2, 3, 4} to B = {1, 3, 5} i.e. (a, b) element of R iff a < b, then R O R to the power of negative 1 end exponent text end textis text-end text

Maths-General

Values of R O R to the power of negative 1 end exponent text end text are {(3, 3), (3, 5), (5, 3), (5, 5)}

parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.