Maths-
General
Easy
Question
Tangents are drawn from a point P to the parabola y2 = 8x such that the slope of one tangent is twice the slope of other. The locus of P is
- a circle
- a straight line
- a parabola
- an ellipse
The correct answer is: a parabola
y2 = 8x, a = 2 2y
m1 = 2m2 1/t1 = 2t2 … (i)
K = a(t1 + t2) = 2(t1 + t2) = 2(3t1) t1 = K/6
t2 = K/3
Now, h = at1t2 h = 2 . k/6 . k/3 k2 = 9h
Lows of P y2 = 9x
Related Questions to study
physics-
In the adjoining figure along which axis the moment of inertia of the triangular lamina will be maximum- [Given that
In the adjoining figure along which axis the moment of inertia of the triangular lamina will be maximum- [Given that
physics-General
physics-
Three particles, each of mass m are situated at the vertices of an equilateral triangle ABC of side cm (as shown in the figure). The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC, in gram units will be :
Three particles, each of mass m are situated at the vertices of an equilateral triangle ABC of side cm (as shown in the figure). The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC, in gram units will be :
physics-General
Maths-
The locus of the middle points of chords of a parabola which subtend a right angle at the vertex of the parabola is
The locus of the middle points of chords of a parabola which subtend a right angle at the vertex of the parabola is
Maths-General
maths-
If the parabola y2 = 4ax passes through (3, 2), then length of latus rectum of the parabola is
If the parabola y2 = 4ax passes through (3, 2), then length of latus rectum of the parabola is
maths-General
maths-
The locus of the poles of focal chord of the parabola y2 = 4ax is
The locus of the poles of focal chord of the parabola y2 = 4ax is
maths-General
maths-
The locus of the mid points of the chords of the parabola y2 = 4ax which passes through a given point (β,)
The locus of the mid points of the chords of the parabola y2 = 4ax which passes through a given point (β,)
maths-General
maths-
The equation of common tangent to the curves y2 = 8x and xy = –1 is
The equation of common tangent to the curves y2 = 8x and xy = –1 is
maths-General
maths-
Angle between tangents drawn from the point (1, 4) to the parabola y2 = 4x is
Angle between tangents drawn from the point (1, 4) to the parabola y2 = 4x is
maths-General
maths-
The general equation of 2nd degree 9x2 –24xy + 16y2 – 20x –15y – 60 = 0 represents
The general equation of 2nd degree 9x2 –24xy + 16y2 – 20x –15y – 60 = 0 represents
maths-General
maths-
If (2, 0) is the vertex and y-axis is the directrix of the parabola then its focus is
If (2, 0) is the vertex and y-axis is the directrix of the parabola then its focus is
maths-General
maths-
The equation of directrix of the parabola y2 + 4y + 4x + 2 = 0 is
The equation of directrix of the parabola y2 + 4y + 4x + 2 = 0 is
maths-General
maths-
The parametric representation of a parabola is x = 3 + t2, y = 2t – 1. Its focus is -
The parametric representation of a parabola is x = 3 + t2, y = 2t – 1. Its focus is -
maths-General
physics-
A disc of mass 2 M and radius R is placed on a fixed plank (rough) of length L. The coefficient of friction between the plank and disc is = 0.5. String (light) is connected to centre of disc and passing over a smooth light pulley and connected to a block of mass M as shown in the figure. Now the disc is given an angular velocity in clockwise direction and is gently placed on the plank. Consider this instant as t=0. Based on above information, answer the following questions : Mark the correct statement w.r.t. motion of block and disc.
A disc of mass 2 M and radius R is placed on a fixed plank (rough) of length L. The coefficient of friction between the plank and disc is = 0.5. String (light) is connected to centre of disc and passing over a smooth light pulley and connected to a block of mass M as shown in the figure. Now the disc is given an angular velocity in clockwise direction and is gently placed on the plank. Consider this instant as t=0. Based on above information, answer the following questions : Mark the correct statement w.r.t. motion of block and disc.
physics-General
maths-
The locus of the point of intersection of the tangents to the parabola x2 – 4x – 8y + 28 = 0 which are at right angle is -
The locus of the point of intersection of the tangents to the parabola x2 – 4x – 8y + 28 = 0 which are at right angle is -
maths-General
maths-
An equilateral triangle is inscribed in the parabola y2 = 4ax whose vertices are at the parabola, then the length of its side is equal to -
An equilateral triangle is inscribed in the parabola y2 = 4ax whose vertices are at the parabola, then the length of its side is equal to -
maths-General