Maths-
General
Easy

Question

The equation of the line passing through pole and open parentheses 2 comma fraction numerator pi over denominator 3 end fraction close parentheses is

  1. r=2    
  2. theta equals pi divided by 3    
  3. r to the power of 2 end exponent equals 2 r plus 3    
  4. r S i n space theta equals 4    

hintHint:

Using the general equation of the line passing through two points, find the equation of the given line.

The correct answer is: theta equals pi divided by 3


    W e space k n o w space t h a t space t h e space c o o r d i n a t e s space a r e space open parentheses 0 comma 0 close parentheses space a t space t h e space p o l e.
H e n c e comma space f o r space e q u a t i o n space o f space l i n e space p a s sin g space t h r o u g h space p o l e space a n d space open parentheses 2 comma pi over 3 close parentheses comma
open parentheses r subscript 1 comma theta subscript 1 close parentheses equals open parentheses 0 comma 0 close parentheses space a n d space open parentheses r subscript 2 comma theta subscript 2 close parentheses equals open parentheses 2 comma pi over 3 close parentheses

T h e space e q u a t i o n space o f space t h e space l i n e space i s
fraction numerator sin open parentheses theta subscript 2 minus theta subscript 1 close parentheses over denominator r end fraction equals fraction numerator sin open parentheses theta subscript 1 minus theta close parentheses over denominator r subscript 2 end fraction
fraction numerator sin open parentheses begin display style pi over 3 end style minus 0 close parentheses over denominator r end fraction equals fraction numerator sin open parentheses 0 minus theta close parentheses over denominator 2 end fraction
0 over r equals fraction numerator sin open parentheses negative theta close parentheses over denominator 2 end fraction
sin theta equals 0
theta equals sin to the power of negative 1 end exponent 0
therefore theta equals straight pi over 3

    Related Questions to study

    General
    Maths-

    The polar equation of y to the power of 2 end exponent equals 4 x is

    Here we used the concept of polar coordinate system and also the trigonometric ratios to find the solution. So the equation is r equals 4 space c o t space theta space cos e c space theta.

    The polar equation of y to the power of 2 end exponent equals 4 x is

    Maths-General

    Here we used the concept of polar coordinate system and also the trigonometric ratios to find the solution. So the equation is r equals 4 space c o t space theta space cos e c space theta.

    General
    Maths-

    The cartesian equation of r equals a s i n space 2 theta is

    Here we used the concept of the polar coordinate system and also the trigonometric ratios to find the solution. So the equation is 4 a squared x squared y squared equals left parenthesis x squared plus y squared right parenthesis cubed.

    The cartesian equation of r equals a s i n space 2 theta is

    Maths-General

    Here we used the concept of the polar coordinate system and also the trigonometric ratios to find the solution. So the equation is 4 a squared x squared y squared equals left parenthesis x squared plus y squared right parenthesis cubed.

    General
    physics-

    Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line O A in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line O B. If the frequency of P is 341 H z comma the frequency of Q will be

    Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line O A in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line O B. If the frequency of P is 341 H z comma the frequency of Q will be

    physics-General
    parallel
    General
    Maths-

    If a hyperbola passing through the origin has 3 x minus 4 y minus 1 equals 0 and 4 x minus 3 y minus 6 equals 0 as its asymptotes, then the equation of its tranvsverse and conjugate axes are

    Here we used the concept of polar coordinate system and also the trigonometric ratios to find the solution. T h e space e q u a t i o n space o f space t r a n s v e r s e space i s space x plus y minus 5 equals 0. space T h e space e q u a t i o n space o f space c o n j u g a t e space a x i s space i s space x minus y minus 1 equals 0.

    If a hyperbola passing through the origin has 3 x minus 4 y minus 1 equals 0 and 4 x minus 3 y minus 6 equals 0 as its asymptotes, then the equation of its tranvsverse and conjugate axes are

    Maths-General

    Here we used the concept of polar coordinate system and also the trigonometric ratios to find the solution. T h e space e q u a t i o n space o f space t r a n s v e r s e space i s space x plus y minus 5 equals 0. space T h e space e q u a t i o n space o f space c o n j u g a t e space a x i s space i s space x minus y minus 1 equals 0.

    General
    maths-

    Five distinct letters are to be transmitted through a communication channel. A total number of 15 blanks is to be inserted between the two letters with at least three between every two. The number of ways in which this can be done is -

    Five distinct letters are to be transmitted through a communication channel. A total number of 15 blanks is to be inserted between the two letters with at least three between every two. The number of ways in which this can be done is -

    maths-General
    General
    maths-

    The number of ordered pairs (m, n), m, n element of {1, 2, … 100} such that 7m + 7n is divisible by 5 is -

    The number of ordered pairs (m, n), m, n element of {1, 2, … 100} such that 7m + 7n is divisible by 5 is -

    maths-General
    parallel
    General
    maths-

    Consider the following statements:
    1. The number of ways of arranging m different things taken all at a time in which p less or equal than m particular things are never together is m! – (m – p + 1)! p!.
    2. A pack of 52 cards can be divided equally among four players in order in fraction numerator 52 factorial over denominator left parenthesis 13 factorial right parenthesis to the power of 4 end exponent end fractionways.
    Which of these is/are correct?

    Consider the following statements:
    1. The number of ways of arranging m different things taken all at a time in which p less or equal than m particular things are never together is m! – (m – p + 1)! p!.
    2. A pack of 52 cards can be divided equally among four players in order in fraction numerator 52 factorial over denominator left parenthesis 13 factorial right parenthesis to the power of 4 end exponent end fractionways.
    Which of these is/are correct?

    maths-General
    General
    maths-

    The total number of function ‘ƒ’ from the set {1, 2, 3} into the set {1, 2, 3, 4, 5} such that ƒ(i) less or equal than ƒ(j), straight for all i < j, is equal to-

    The total number of function ‘ƒ’ from the set {1, 2, 3} into the set {1, 2, 3, 4, 5} such that ƒ(i) less or equal than ƒ(j), straight for all i < j, is equal to-

    maths-General
    General
    maths-

    The number of points in the Cartesian plane with integral co-ordinates satisfying the inequalities |x|  less or equal than k, |y| less or equal than k, |x – y| less or equal than k ; is-

    The number of points in the Cartesian plane with integral co-ordinates satisfying the inequalities |x|  less or equal than k, |y| less or equal than k, |x – y| less or equal than k ; is-

    maths-General
    parallel
    General
    maths-

    The numbers of integers between 1 and 106 have the sum of their digit equal to K(where 0 < K < 18) is -

    The numbers of integers between 1 and 106 have the sum of their digit equal to K(where 0 < K < 18) is -

    maths-General
    General
    maths-

    The straight lines I1, I2, I3 are parallel and lie in the same plane. A total number of m points are taken on I1 ; n points on I2 , k points on I3. The maximum number of triangles formed with vertices at these points are -

    The straight lines I1, I2, I3 are parallel and lie in the same plane. A total number of m points are taken on I1 ; n points on I2 , k points on I3. The maximum number of triangles formed with vertices at these points are -

    maths-General
    General
    Maths-

    If the line l x plus m y equals 1 is a normal to the hyperbola fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 then fraction numerator a to the power of 2 end exponent over denominator l to the power of 2 end exponent end fraction minus fraction numerator b to the power of 2 end exponent over denominator m to the power of 2 end exponent end fraction equals

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the value of a squared over l squared minus b squared over m squared equals left parenthesis a squared plus b squared right parenthesis squared.

    If the line l x plus m y equals 1 is a normal to the hyperbola fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 then fraction numerator a to the power of 2 end exponent over denominator l to the power of 2 end exponent end fraction minus fraction numerator b to the power of 2 end exponent over denominator m to the power of 2 end exponent end fraction equals

    Maths-General

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the value of a squared over l squared minus b squared over m squared equals left parenthesis a squared plus b squared right parenthesis squared.

    parallel
    General
    Maths-

    If the tangents drawn from a point on the hyperbola x to the power of 2 end exponent minus y to the power of 2 end exponent equals a to the power of 2 end exponent minus b to the power of 2 end exponent to the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 make angles α and β with the transverse axis of the hyperbola, then

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the correct relation is tan alpha space tan beta equals 1

    If the tangents drawn from a point on the hyperbola x to the power of 2 end exponent minus y to the power of 2 end exponent equals a to the power of 2 end exponent minus b to the power of 2 end exponent to the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction minus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 make angles α and β with the transverse axis of the hyperbola, then

    Maths-General

    So here we understood the concept of hyperbola and the normal lines.In analytic geometry, a hyperbola is a conic section created when a plane meets a double right circular cone at an angle that overlaps both cone halves. So the correct relation is tan alpha space tan beta equals 1

    General
    Maths-

    The eccentricity of the hyperbola whose latus rectum subtends a right angle at centre is

    The eccentricity of the hyperbola whose latus rectum subtends a right angle at centre is

    Maths-General
    General
    Maths-

    If r, s, t are prime numbers and p, q are the positive integers such that the LCM of p, q is r2t4s2, then the number of ordered pair (p, q) is –

    Finding the smallest common multiple between any two or more numbers is done using the least common multiple (LCM) approach. A number that is a multiple of two or more other numbers is said to be a common multiple. Here we understood the concept of LCM and the pairs, so the total pairs can be 225.

    If r, s, t are prime numbers and p, q are the positive integers such that the LCM of p, q is r2t4s2, then the number of ordered pair (p, q) is –

    Maths-General

    Finding the smallest common multiple between any two or more numbers is done using the least common multiple (LCM) approach. A number that is a multiple of two or more other numbers is said to be a common multiple. Here we understood the concept of LCM and the pairs, so the total pairs can be 225.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.