Maths-
General
Easy

Question

The indefinite integral of left parenthesis 12 s i n invisible function application x plus 5 c o s invisible function application x right parenthesis to the power of negative 1 end exponent is, for any arbitrary constant -

  1. 1 divided by 13 log invisible function application open vertical bar tan invisible function application open parentheses x over 2 plus 1 half tan to the power of negative 1 end exponent invisible function application 5 over 12 close parentheses close vertical bar plus c    
  2. 1 divided by 13 l o g invisible function application open vertical bar t a n invisible function application open parentheses fraction numerator x over denominator 2 end fraction plus fraction numerator 1 over denominator 2 end fraction t a n to the power of negative 1 end exponent invisible function application fraction numerator 12 over denominator 5 end fraction close parentheses close vertical bar plus c    
  3. 1 divided by 13 l o g invisible function application open vertical bar t a n invisible function application open parentheses x plus t a n to the power of negative 1 end exponent invisible function application fraction numerator 5 over denominator 12 end fraction close parentheses close vertical bar plus c    
  4. 1 divided by 13 log invisible function application open vertical bar tan invisible function application open parentheses x plus tan to the power of negative 1 end exponent invisible function application 12 over 5 close parentheses close vertical bar plus c  

The correct answer is: 1 divided by 13 l o g invisible function application open vertical bar t a n invisible function application open parentheses fraction numerator x over denominator 2 end fraction plus fraction numerator 1 over denominator 2 end fraction t a n to the power of negative 1 end exponent invisible function application fraction numerator 12 over denominator 5 end fraction close parentheses close vertical bar plus c



    Related Questions to study

    General
    maths-

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    maths-General
    General
    maths-

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    maths-General
    General
    maths-

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    maths-General
    parallel
    General
    maths-

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    maths-General
    General
    maths-

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    maths-General
    General
    maths-

    Statement I : Graph of y = tan x is symmetrical about origin
    Statement II : Graph of y equals sec squared invisible function application x is symmetrical about y-axis

    Statement I : Graph of y = tan x is symmetrical about origin
    Statement II : Graph of y equals sec squared invisible function application x is symmetrical about y-axis

    maths-General
    parallel
    General
    maths-

    Statement- 1 colon If f left parenthesis x right parenthesis equals vertical line x minus 1 vertical line plus vertical line x minus 2 vertical line plus vertical line x minus 3 vertical line Where 2 less than x less than 3 is an identity function.
    Statement- 2 colon f colon A rightwards arrowR defined by f left parenthesis x right parenthesis equals x is an identity function.

    Statement- 1 colon If f left parenthesis x right parenthesis equals vertical line x minus 1 vertical line plus vertical line x minus 2 vertical line plus vertical line x minus 3 vertical line Where 2 less than x less than 3 is an identity function.
    Statement- 2 colon f colon A rightwards arrowR defined by f left parenthesis x right parenthesis equals x is an identity function.

    maths-General
    General
    Maths-

    Assertion (A) : Graph of open curly brackets left parenthesis x comma y right parenthesis divided by y equals 2 to the power of negative x end exponent text  and  end text x comma y element of R close curly brackets
    Reason (R) : In the expression am/n, where a, m, n × J+, m represents the power to which a is be raised, whereas n determines the root to be taken; these two processes may be administered in either order with the same result.

    Assertion (A) : Graph of open curly brackets left parenthesis x comma y right parenthesis divided by y equals 2 to the power of negative x end exponent text  and  end text x comma y element of R close curly brackets
    Reason (R) : In the expression am/n, where a, m, n × J+, m represents the power to which a is be raised, whereas n determines the root to be taken; these two processes may be administered in either order with the same result.

    Maths-General
    General
    maths-

    Assertion: The period of f left parenthesis x right parenthesis equals s i n invisible function application 2 x c o s invisible function application left square bracket 2 x right square bracket minus c o s invisible function application 2 x s i n invisible function application left square bracket 2 x right square bracket is 1/2.
    Reason: The period of x – [x] is 1.

    Assertion: The period of f left parenthesis x right parenthesis equals s i n invisible function application 2 x c o s invisible function application left square bracket 2 x right square bracket minus c o s invisible function application 2 x s i n invisible function application left square bracket 2 x right square bracket is 1/2.
    Reason: The period of x – [x] is 1.

    maths-General
    parallel
    General
    Maths-

    Assertion : Fundamental period of c o s invisible function application x plus c o t invisible function application x text  is  end text 2 pi.
    Reason : If the period of f(x) is T subscript 1 end subscript and the period of g(x) is T subscript 2 end subscript, then the fundamental period of f(x) + g(x) is the L.C.M. of T subscript 1 end subscript and T

    Assertion : Fundamental period of c o s invisible function application x plus c o t invisible function application x text  is  end text 2 pi.
    Reason : If the period of f(x) is T subscript 1 end subscript and the period of g(x) is T subscript 2 end subscript, then the fundamental period of f(x) + g(x) is the L.C.M. of T subscript 1 end subscript and T

    Maths-General
    General
    Maths-

    Assertion: The function defined by f left parenthesis x right parenthesis equals x to the power of 3 end exponent plus a x to the power of 2 end exponent plus b x plus c is invertible if and only if a to the power of 2 end exponent less or equal than 3 b.
    Reason: A function is invertible if and only if it is one-to-one and onto function.

    Assertion: The function defined by f left parenthesis x right parenthesis equals x to the power of 3 end exponent plus a x to the power of 2 end exponent plus b x plus c is invertible if and only if a to the power of 2 end exponent less or equal than 3 b.
    Reason: A function is invertible if and only if it is one-to-one and onto function.

    Maths-General
    General
    Maths-

    Assertion : f left parenthesis x right parenthesis equals s g n left parenthesis x minus vertical line x vertical line right parenthesiscan never become positive.
    Reason : f(x) = sgn x is always a positive function.

    Assertion : f left parenthesis x right parenthesis equals s g n left parenthesis x minus vertical line x vertical line right parenthesiscan never become positive.
    Reason : f(x) = sgn x is always a positive function.

    Maths-General
    parallel
    General
    Maths-

    If f (x) = open curly brackets table row cell e to the power of cos invisible function application x end exponent end cell cell sin invisible function application x text for  end text vertical line x vertical line less or equal than 2 end cell row cell text 2, end text end cell cell text otherwise end text end cell end table comma text then  end text not stretchy integral subscript text -2 end text end subscript superscript 3 end superscript f ​ left parenthesis x right parenthesis d x equals close

    If f (x) = open curly brackets table row cell e to the power of cos invisible function application x end exponent end cell cell sin invisible function application x text for  end text vertical line x vertical line less or equal than 2 end cell row cell text 2, end text end cell cell text otherwise end text end cell end table comma text then  end text not stretchy integral subscript text -2 end text end subscript superscript 3 end superscript f ​ left parenthesis x right parenthesis d x equals close

    Maths-General
    General
    Maths-

    The value of the integral not stretchy integral subscript e to the power of negative 1 end exponent end subscript superscript e to the power of 2 end exponent end superscript open vertical bar fraction numerator log subscript e end subscript invisible function application blank x over denominator x end fraction close vertical bar dx is :

    The value of the integral not stretchy integral subscript e to the power of negative 1 end exponent end subscript superscript e to the power of 2 end exponent end superscript open vertical bar fraction numerator log subscript e end subscript invisible function application blank x over denominator x end fraction close vertical bar dx is :

    Maths-General
    General
    Maths-

    Assertion : Let f colon R minus left curly bracket 1 , 2 comma 3 right curly bracket rightwards arrow R be a function defined by f(x) = fraction numerator 1 over denominator x minus 1 end fraction plus fraction numerator 2 over denominator x minus 2 end fraction plus fraction numerator 3 over denominator x minus 3 end fraction. Then f is many-one function.
    Reason : If either f apostrophe left parenthesis x right parenthesis greater than 0 or f to the power of apostrophe left parenthesis x right parenthesis less than 0 comma for all x element ofdomain of f, then y = f(x) is one-one function.</span

    Assertion : Let f colon R minus left curly bracket 1 , 2 comma 3 right curly bracket rightwards arrow R be a function defined by f(x) = fraction numerator 1 over denominator x minus 1 end fraction plus fraction numerator 2 over denominator x minus 2 end fraction plus fraction numerator 3 over denominator x minus 3 end fraction. Then f is many-one function.
    Reason : If either f apostrophe left parenthesis x right parenthesis greater than 0 or f to the power of apostrophe left parenthesis x right parenthesis less than 0 comma for all x element ofdomain of f, then y = f(x) is one-one function.</span

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.