Physics-
General
Easy

Question

A square sheet of edge length L and uniform mass per unit area s is used to form a hollow cylinder. The moment of inertia of this cylinder about the central axis is

  1. fraction numerator 2 sigma L to the power of 4 end exponent over denominator pi to the power of 2 end exponent end fraction    
  2. fraction numerator sigma L to the power of 4 end exponent over denominator 4 pi to the power of 2 end exponent end fraction    
  3. sigma L to the power of 2 end exponent    
  4. fraction numerator sigma L to the power of 4 end exponent over denominator 3 square root of 2 pi to the power of 2 end exponent end fraction    

The correct answer is: fraction numerator sigma L to the power of 4 end exponent over denominator 4 pi to the power of 2 end exponent end fraction

Related Questions to study

General
physics-

Moment of inertia of a semicircular ring of radius R and mass M ; about an axis passing through A and perpendicular to the plane of the paper is

Moment of inertia of a semicircular ring of radius R and mass M ; about an axis passing through A and perpendicular to the plane of the paper is

physics-General
General
physics-

Moment of inertia of a thin semicircular disc (mass = M & radius = R) about an axis through point O and perpendicular to plane of disc, is given by :

Moment of inertia of a thin semicircular disc (mass = M & radius = R) about an axis through point O and perpendicular to plane of disc, is given by :

physics-General
General
physics-

In the triangular sheet given PQ = QR = l. If M is the mass of the sheet. What is the moment of inertial about PR

In the triangular sheet given PQ = QR = l. If M is the mass of the sheet. What is the moment of inertial about PR

physics-General
parallel
General
physics-

The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is

The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is

physics-General
General
physics-

Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.

Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.

physics-General
General
physics-

Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:

Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:

physics-General
parallel
General
physics-

Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB

Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB

physics-General
General
physics-

A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is fraction numerator I subscript B B end subscript over denominator I subscript A A end subscript end fraction equals 3 The distance of the centre of mass of the system from the mass A is

A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is fraction numerator I subscript B B end subscript over denominator I subscript A A end subscript end fraction equals 3 The distance of the centre of mass of the system from the mass A is

physics-General
General
physics-

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

Choose the correct statement(s) related to particle m

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

Choose the correct statement(s) related to particle m

physics-General
parallel
General
physics-

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

Identify the correct statement(s) related to the situation when the particle starts moving downward.

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

Identify the correct statement(s) related to the situation when the particle starts moving downward.

physics-General
General
physics-

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The maximum height h attained by the particle is

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The maximum height h attained by the particle is

physics-General
General
physics-

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The final velocity of the wedge v2 is

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The final velocity of the wedge v2 is

physics-General
parallel
General
physics-

The diagram to the right shows the velocity-time graph for two masses R and S that collided elastically. Which of the following statements is true?

I) R and S moved in the same direction after the collision.
II) Kinetic energy of the system (R & S) is minimum at t = 2 milli sec.
III) The mass of R was greater than mass of S.

The diagram to the right shows the velocity-time graph for two masses R and S that collided elastically. Which of the following statements is true?

I) R and S moved in the same direction after the collision.
II) Kinetic energy of the system (R & S) is minimum at t = 2 milli sec.
III) The mass of R was greater than mass of S.

physics-General
General
physics-

A particle of mass m is released from a height H on a smooth curved surface which ends into a vertical loop of radius R, as shown

The minimum value of H required so that the particle makes a complete vertical circle is given by

A particle of mass m is released from a height H on a smooth curved surface which ends into a vertical loop of radius R, as shown

The minimum value of H required so that the particle makes a complete vertical circle is given by

physics-General
General
physics-

A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?

A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.