Physics-
General
Easy

Question

Four open organ pipes of different lengths and different gases at same temperature as shown in figure. Let fA , fB , fC and fD be their fundamental frequencies then :open square brackets text  Take  end text gamma subscript C O subscript 2 end subscript end subscript equals 7 divided by 5 close square brackets

  1. f subscript A end subscript divided by f subscript B end subscript equals square root of 2    
  2. f subscript B end subscript divided by f subscript C end subscript equals square root of 72 divided by 28 end root    
  3. f subscript C end subscript divided by f subscript D end subscript equals square root of 11 divided by 28 end root    
  4. f subscript D end subscript divided by f subscript A end subscript equals square root of 76 divided by 11 end root    

The correct answer is: f subscript C end subscript divided by f subscript D end subscript equals square root of 11 divided by 28 end root

Related Questions to study

General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed

The maximum intensity produced at D is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed

The maximum intensity produced at D is given by

physics-General
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The points of maximum rarefaction are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The points of maximum rarefaction are

physics-General
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The stationary points are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The stationary points are

physics-General
parallel
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The points moving opposite to the direction of propagation are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The points moving opposite to the direction of propagation are

physics-General
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The points moving in the direction of wave are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.

The points moving in the direction of wave are

physics-General
General
physics-

Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?

Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?

physics-General
parallel
General
Physics-

A string is fixed at both ends vibrates in a resonant mode with a separation 2.0 cm between the consecutive nodes. For the next higher resonant frequency, this separation is reduced to 1.6 cm. The length of the string is

A string is fixed at both ends vibrates in a resonant mode with a separation 2.0 cm between the consecutive nodes. For the next higher resonant frequency, this separation is reduced to 1.6 cm. The length of the string is

Physics-General
General
physics-

The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative x-axis. Choose the correct alternative(s) related to the movement of the nine points shown in the figure.

The points moving downwards is/are

The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative x-axis. Choose the correct alternative(s) related to the movement of the nine points shown in the figure.

The points moving downwards is/are

physics-General
General
physics-

A detector is released from rest over a source of sound of frequency f0= 103 Hz. The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m/s2)

A detector is released from rest over a source of sound of frequency f0= 103 Hz. The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m/s2)

physics-General
parallel
General
physics-

A stationary sound source 's' of frequency 334 Hz and a stationary observer 'O' are placed near a reflecting surface moving away from the source with velocity 2 m/sec as shown in the figure. If the velocity of the sound waves is air is V = 330 m/sec, the apparent frequency of the echo is

A stationary sound source 's' of frequency 334 Hz and a stationary observer 'O' are placed near a reflecting surface moving away from the source with velocity 2 m/sec as shown in the figure. If the velocity of the sound waves is air is V = 330 m/sec, the apparent frequency of the echo is

physics-General
General
physics-

Consider two sound sources S1 and S2 having same frequency 100Hz and the observer O located between them as shown in the fig. All the three are moving with same velocity in same direction. The beat frequency of the observer is

Consider two sound sources S1 and S2 having same frequency 100Hz and the observer O located between them as shown in the fig. All the three are moving with same velocity in same direction. The beat frequency of the observer is

physics-General
General
Physics-

In a test of subsonic Jet flies over head at an altitude of 100 m. The sound intensity on the ground as the Jet passes overhead is 160 dB. At what altitude should the plane fly so that the ground noise is not greater than 120 dB.

In a test of subsonic Jet flies over head at an altitude of 100 m. The sound intensity on the ground as the Jet passes overhead is 160 dB. At what altitude should the plane fly so that the ground noise is not greater than 120 dB.

Physics-General
parallel
General
Physics-

The ratio of intensities between two coherent sound sources is 4 : 1. The difference of loudness in dB between maximum and minimum intensities when they interfere in space is:

The ratio of intensities between two coherent sound sources is 4 : 1. The difference of loudness in dB between maximum and minimum intensities when they interfere in space is:

Physics-General
General
physics-

A person standing at a distance of 6 m from a source of sound receives sound wave in two ways, one directly from the source and other after reflection from a rigid boundary as shown in the figure. The maximum wavelength for which, the person will receive maximum sound intensity, is

A person standing at a distance of 6 m from a source of sound receives sound wave in two ways, one directly from the source and other after reflection from a rigid boundary as shown in the figure. The maximum wavelength for which, the person will receive maximum sound intensity, is

physics-General
General
physics-

A wave pulse on a string has the dimension shown in figure. The waves speed is v = 1 cm/s. If point O is a free end. The shape of wave at time t = 3 s is :

A wave pulse on a string has the dimension shown in figure. The waves speed is v = 1 cm/s. If point O is a free end. The shape of wave at time t = 3 s is :

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.