Physics-
General
Easy
Question
In the circuit shown, the energy stored in 1 capacitor is
- 40
- 64
- 32
- none
The correct answer is: 32
Related Questions to study
physics-
he plates S and T of an uncharged parallel plate capacitor are connected across a battery. The battery is then disconnected and the charged plates are now connected in a system as shown in the figure. The system shown is in equilibrium. All the strings are insulating and massless. The magnitude of charge on one of the capacitor plates is: [Area of plates = A]
he plates S and T of an uncharged parallel plate capacitor are connected across a battery. The battery is then disconnected and the charged plates are now connected in a system as shown in the figure. The system shown is in equilibrium. All the strings are insulating and massless. The magnitude of charge on one of the capacitor plates is: [Area of plates = A]
physics-General
physics-
Three plates A, B and C each of area 0.1 m2 are separated by 0.885 mm from each other as shown in the figure. A 10 V battery is used to charge the system. The energy stored in the system is
Three plates A, B and C each of area 0.1 m2 are separated by 0.885 mm from each other as shown in the figure. A 10 V battery is used to charge the system. The energy stored in the system is
physics-General
physics-
Two identical capacitors 1 and 2 are connected in series to a battery as shown in figure. Capacitor 2 contains a dielectric slab of dielectric constant k as shown. Q1 and Q2 are the charges stored in the capacitors. Now the dielectric slab is removed and the corresponding charges are Q’1 and Q’2. Then
Two identical capacitors 1 and 2 are connected in series to a battery as shown in figure. Capacitor 2 contains a dielectric slab of dielectric constant k as shown. Q1 and Q2 are the charges stored in the capacitors. Now the dielectric slab is removed and the corresponding charges are Q’1 and Q’2. Then
physics-General
physics-
In the adjoining figure, capacitor (1) and (2) have a capacitance ‘C’ each. When the dielectric of dielectric constant K is inserted between the plates of one of the capacitor, the total charge flowing through battery is
In the adjoining figure, capacitor (1) and (2) have a capacitance ‘C’ each. When the dielectric of dielectric constant K is inserted between the plates of one of the capacitor, the total charge flowing through battery is
physics-General
physics-
In the circuit shown in figure charge stored in the capacitor of capacity 5 mf is
In the circuit shown in figure charge stored in the capacitor of capacity 5 mf is
physics-General
physics-
Five identical capacitor plates are arranged such that they make capacitors each of 2 . The plates are connected to a source of emf 10 V. The charge on plate C is
Five identical capacitor plates are arranged such that they make capacitors each of 2 . The plates are connected to a source of emf 10 V. The charge on plate C is
physics-General
physics-
If charge on left plane of the capacitor in the circuit segment shown in the figure is –, the charge on the right plate of capacitor is
If charge on left plane of the capacitor in the circuit segment shown in the figure is –, the charge on the right plate of capacitor is
physics-General
physics-
Five conducting parallel plates having area A and separation between them d, are placed as shown in the figure. Plate number 2 and 4 are connected wire and between point A and B, a cell of emf E is connected. The charge flown through the cell is
Five conducting parallel plates having area A and separation between them d, are placed as shown in the figure. Plate number 2 and 4 are connected wire and between point A and B, a cell of emf E is connected. The charge flown through the cell is
physics-General
physics-
Three large plates are arranged as shown. How much charge will flow through the key k if it is closed?
Three large plates are arranged as shown. How much charge will flow through the key k if it is closed?
physics-General
physics-
A parallel plate capacitor has two layers of dielectric as shown in figure. This capacitor is connected across a battery. The graph which shows the variation of electric field (E) and distance (x) from left plate.
A parallel plate capacitor has two layers of dielectric as shown in figure. This capacitor is connected across a battery. The graph which shows the variation of electric field (E) and distance (x) from left plate.
physics-General
physics-
The distance between plates of a parallel plate capacitor is 5d. Let the positively charged plate is at x=0 and negatively charged plate is at x=5d. Two slabs one of conductor and other of a dielectric of equal thickness d are inserted between the plates as shown in figure. Potential versus distance graph will look like :
The distance between plates of a parallel plate capacitor is 5d. Let the positively charged plate is at x=0 and negatively charged plate is at x=5d. Two slabs one of conductor and other of a dielectric of equal thickness d are inserted between the plates as shown in figure. Potential versus distance graph will look like :
physics-General
Physics-
A uniform cube of side ‘b’ and mass M rest on a rough horizontal table. A horizontal force F is applied normal to one of the face at a point, at a height 3 above the base. What should be the coefficient of friction (m) between cube and table so that is will tip about an edge before it starts slipping?
A uniform cube of side ‘b’ and mass M rest on a rough horizontal table. A horizontal force F is applied normal to one of the face at a point, at a height 3 above the base. What should be the coefficient of friction (m) between cube and table so that is will tip about an edge before it starts slipping?
Physics-General
physics-
Four open organ pipes of different lengths and different gases at same temperature as shown in figure. their fundamental frequencies then : [Take
Four open organ pipes of different lengths and different gases at same temperature as shown in figure. their fundamental frequencies then : [Take
physics-General
physics-
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a minima at D is given by
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a minima at D is given by
physics-General
physics-
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts: One-part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a maxim at D is given by
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts: One-part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a maxim at D is given by
physics-General