Physics-
General
Easy

Question

In the figure shown a plank of mass m is lying at rest on a smooth horizontal surface. A disc of same mass m and radius r is rotated to an angular speed omega subscript 0 end subscript and then gently placed on the plank. If we consider the plank and the disc as a system then frictional force between them is an internal force. Momentum of the system changes due to external force only. It is found that finally slipping cease, and 50% of total kinetic energy of the system is lost. Assume that plank is long enough. mu is coefficient of friction between disc and plank. Magnitude of the change in angular momentum of disc about centre of mass of disc

  1. fraction numerator 3 over denominator 4 end fraction m r to the power of 2 end exponent omega subscript 0 end subscript    
  2. fraction numerator 1 over denominator 4 end fraction m r to the power of 2 end exponent omega subscript 0 end subscript    
  3. zero    
  4. fraction numerator 1 over denominator 2 end fraction m r to the power of 2 end exponent omega subscript 0 end subscript    

The correct answer is: fraction numerator 1 over denominator 4 end fraction m r to the power of 2 end exponent omega subscript 0 end subscript

Related Questions to study

General
physics-

In the figure shown a plank of mass m is lying at rest on a smooth horizontal surface. A disc of same mass m and radius r is rotated to an angular speed omega subscript 0 end subscript and then gently placed on the plank. If we consider the plank and the disc as a system then frictional force between them is an internal force. Momentum of the system changes due to external force only. It is found that finally slipping cease, and 50% of total kinetic energy of the system is lost. Assume that plank is long enough. mu is coefficient of friction between disc and plank. Time when slipping ceases

In the figure shown a plank of mass m is lying at rest on a smooth horizontal surface. A disc of same mass m and radius r is rotated to an angular speed omega subscript 0 end subscript and then gently placed on the plank. If we consider the plank and the disc as a system then frictional force between them is an internal force. Momentum of the system changes due to external force only. It is found that finally slipping cease, and 50% of total kinetic energy of the system is lost. Assume that plank is long enough. mu is coefficient of friction between disc and plank. Time when slipping ceases

physics-General
General
physics-

In the figure shown a plank of mass m is lying at rest on a smooth horizontal surface. A disc of same mass m and radius r is rotated to an angular speed omega subscript 0 end subscript and then gently placed on the plank. If we consider the plank and the disc as a system then frictional force between them is an internal force. Momentum of the system changes due to external force only. It is found that finally slipping cease, and 50% of total kinetic energy of the system is lost. Assume that plank is long enough. mu is coefficient of friction between disc and plank. Final velocity of the plank is

In the figure shown a plank of mass m is lying at rest on a smooth horizontal surface. A disc of same mass m and radius r is rotated to an angular speed omega subscript 0 end subscript and then gently placed on the plank. If we consider the plank and the disc as a system then frictional force between them is an internal force. Momentum of the system changes due to external force only. It is found that finally slipping cease, and 50% of total kinetic energy of the system is lost. Assume that plank is long enough. mu is coefficient of friction between disc and plank. Final velocity of the plank is

physics-General
General
physics-

In figure, the winch is mounted on an axle, and the 6-sided nut is welded to the winch. By turning the nut with a wrench, a person can rotate the winch. For instance, turning the nut clockwise lifts the block off the ground, because more and more rope gets wrapped around the winch. Three students agree that using a longer wrench makes it easier to turn the winch. But they disagree about why. All three students are talking about the case where the winch is used, over a 10 s time interval, to lift the block one metre off the ground.
Student 1 By using a longer wrench, the person decreases the average force he must exert on the wrench, in order to lift the block one metre in 10s.
Student 2 : Using a longer wrench reduces the work done by the person as he uses the winch to lift the block 1m in 10s.
Student 3 : Using a longer wrench reduces the power that the person must exert to lift the block 1m in 10s.If several wrenches all apply the same torque to a nut, which graph best expresses the relationship between the force the person must apply to the wrench, and the length of the wrench

In figure, the winch is mounted on an axle, and the 6-sided nut is welded to the winch. By turning the nut with a wrench, a person can rotate the winch. For instance, turning the nut clockwise lifts the block off the ground, because more and more rope gets wrapped around the winch. Three students agree that using a longer wrench makes it easier to turn the winch. But they disagree about why. All three students are talking about the case where the winch is used, over a 10 s time interval, to lift the block one metre off the ground.
Student 1 By using a longer wrench, the person decreases the average force he must exert on the wrench, in order to lift the block one metre in 10s.
Student 2 : Using a longer wrench reduces the work done by the person as he uses the winch to lift the block 1m in 10s.
Student 3 : Using a longer wrench reduces the power that the person must exert to lift the block 1m in 10s.If several wrenches all apply the same torque to a nut, which graph best expresses the relationship between the force the person must apply to the wrench, and the length of the wrench

physics-General
parallel
General
physics-

In figure, the winch is mounted on an axle, and the 6-sided nut is welded to the winch. By turning the nut with a wrench, a person can rotate the winch. For instance, turning the nut clockwise lifts the block off the ground, because more and more rope gets wrapped around the winch. Three students agree that using a longer wrench makes it easier to turn the winch. But they disagree about why. All three students are talking about the case where the winch is used, over a 10 s time interval, to lift the block one metre off the ground.
Student 1 By using a longer wrench, the person decreases the average force he must exert on the wrench, in order to lift the block one metre in 10s.
Student 2 : Using a longer wrench reduces the work done by the person as he uses the winch to lift the block 1m in 10s.
Student 3 : Using a longer wrench reduces the power that the person must exert to lift the block 1m in 10s.
Student 1 is :-

In figure, the winch is mounted on an axle, and the 6-sided nut is welded to the winch. By turning the nut with a wrench, a person can rotate the winch. For instance, turning the nut clockwise lifts the block off the ground, because more and more rope gets wrapped around the winch. Three students agree that using a longer wrench makes it easier to turn the winch. But they disagree about why. All three students are talking about the case where the winch is used, over a 10 s time interval, to lift the block one metre off the ground.
Student 1 By using a longer wrench, the person decreases the average force he must exert on the wrench, in order to lift the block one metre in 10s.
Student 2 : Using a longer wrench reduces the work done by the person as he uses the winch to lift the block 1m in 10s.
Student 3 : Using a longer wrench reduces the power that the person must exert to lift the block 1m in 10s.
Student 1 is :-

physics-General
General
chemistry-

A solution contains non volatile solute of molecular mass M subscript 2 end subscript. Which of the following can be used to calculate the molecular mass of solute in terms of osmotic pressure -

A solution contains non volatile solute of molecular mass M subscript 2 end subscript. Which of the following can be used to calculate the molecular mass of solute in terms of osmotic pressure -

chemistry-General
General
physics-

When a force F is applied on a block of mass m resting on a horizontal surface then there are two possibilities, either block moves by translation or it moves by toppling. If the surface is smooth then the block always translates but on a rough surface it topples only when the torque of the applied force F is greater than the torque of mg about a point in contact with the ground. When the force F is applied the body may topple about A or it may translate. If the block is a cube of edge a and mu = 0.6 then :-

When a force F is applied on a block of mass m resting on a horizontal surface then there are two possibilities, either block moves by translation or it moves by toppling. If the surface is smooth then the block always translates but on a rough surface it topples only when the torque of the applied force F is greater than the torque of mg about a point in contact with the ground. When the force F is applied the body may topple about A or it may translate. If the block is a cube of edge a and mu = 0.6 then :-

physics-General
parallel
General
physics-

When a force F is applied on a block of mass m resting on a horizontal surface then there are two possibilities, either block moves by translation or it moves by toppling. If the surface is smooth then the block always translates but on a rough surface it topples only when the torque of the applied force F is greater than the torque of mg about a point in contact with the ground. When the force F is applied the body may topple about A or it may translate.If the block be a cube of edge a and mu = 0.2 then :-

When a force F is applied on a block of mass m resting on a horizontal surface then there are two possibilities, either block moves by translation or it moves by toppling. If the surface is smooth then the block always translates but on a rough surface it topples only when the torque of the applied force F is greater than the torque of mg about a point in contact with the ground. When the force F is applied the body may topple about A or it may translate.If the block be a cube of edge a and mu = 0.2 then :-

physics-General
General
physics-

When a force F is applied on a block of mass m resting on a horizontal surface then there are two possibilities, either block moves by translation or it moves by toppling. If the surface is smooth then the block always translates but on a rough surface it topples only when the torque of the applied force F is greater than the torque of mg about a point in contact with the ground. When the force F is applied the body may topple about A or it may translate. When the block topples about A, the normal force :-

When a force F is applied on a block of mass m resting on a horizontal surface then there are two possibilities, either block moves by translation or it moves by toppling. If the surface is smooth then the block always translates but on a rough surface it topples only when the torque of the applied force F is greater than the torque of mg about a point in contact with the ground. When the force F is applied the body may topple about A or it may translate. When the block topples about A, the normal force :-

physics-General
General
physics-

A rod AB of length 2 m and mass 2 kg is lying on smooth horizontal x- y plane with its centre at origin O as shown figure. An impulse J of magnitude 10 N to the power of negative s end exponent is applied perpendicular to AB at A. Co-ordinates of point A of the rod after time t = fraction numerator pi over denominator 45 end fraction s will be :-

A rod AB of length 2 m and mass 2 kg is lying on smooth horizontal x- y plane with its centre at origin O as shown figure. An impulse J of magnitude 10 N to the power of negative s end exponent is applied perpendicular to AB at A. Co-ordinates of point A of the rod after time t = fraction numerator pi over denominator 45 end fraction s will be :-

physics-General
parallel
General
physics-

A rod AB of length 2 m and mass 2 kg is lying on smooth horizontal x- y plane with its centre at origin O as shown figure. An impulse J of magnitude 10 N-s is applied perpendicular to AB at A. The distance of point P from centre of the rod which is at rest just after the impact is :-

A rod AB of length 2 m and mass 2 kg is lying on smooth horizontal x- y plane with its centre at origin O as shown figure. An impulse J of magnitude 10 N-s is applied perpendicular to AB at A. The distance of point P from centre of the rod which is at rest just after the impact is :-

physics-General
General
physics-

A disc of mass m and radius R is placed over a plank of same mass m. There is sufficient friction between disc and plank to prevent slipping. A force F is applied at the centre of the disc. Force of friction between the disc and the plank is :-

A disc of mass m and radius R is placed over a plank of same mass m. There is sufficient friction between disc and plank to prevent slipping. A force F is applied at the centre of the disc. Force of friction between the disc and the plank is :-

physics-General
General
physics-

A disc of mass m and radius R is placed over a plank of same mass m. There is sufficient friction between disc and plank to prevent slipping. A force F is applied at the centre of the disc. Acceleration of the plank is :-

A disc of mass m and radius R is placed over a plank of same mass m. There is sufficient friction between disc and plank to prevent slipping. A force F is applied at the centre of the disc. Acceleration of the plank is :-

physics-General
parallel
General
physics-

A small sphere of mass 1 kg is rolling without slipping on a stationary base with linear speed v = square root of fraction numerator 200 over denominator 7 end fraction end root m divided by s. It leaves the inclined plane at point C Find ratio of rotational and translational kinetic energy of the sphere when it strikes the ground after leaving from point C :-

A small sphere of mass 1 kg is rolling without slipping on a stationary base with linear speed v = square root of fraction numerator 200 over denominator 7 end fraction end root m divided by s. It leaves the inclined plane at point C Find ratio of rotational and translational kinetic energy of the sphere when it strikes the ground after leaving from point C :-

physics-General
General
physics-

A small sphere of mass 1 kg is rolling without slipping on a stationary base with linear speed v = square root of fraction numerator 200 over denominator 7 end fraction end root m divided by s. It leaves the inclined plane at point C Find its linear speed at point C :-

A small sphere of mass 1 kg is rolling without slipping on a stationary base with linear speed v = square root of fraction numerator 200 over denominator 7 end fraction end root m divided by s. It leaves the inclined plane at point C Find its linear speed at point C :-

physics-General
General
physics-

A solid sphere has linear velocity v subscript 0 end subscript = 4 m/s and angular velocity omega subscript 0 end subscript =9 rad/s as shown. Ground on which it is moving, is smooth. It collides elastically with a rough wall of coefficient of friction mu. Radius of the sphere is 1 m and mass is 2 kg. What is net linear impulse imparted by the wall on the sphere during impact :-

A solid sphere has linear velocity v subscript 0 end subscript = 4 m/s and angular velocity omega subscript 0 end subscript =9 rad/s as shown. Ground on which it is moving, is smooth. It collides elastically with a rough wall of coefficient of friction mu. Radius of the sphere is 1 m and mass is 2 kg. What is net linear impulse imparted by the wall on the sphere during impact :-

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.