Physics-
General
Easy
Question
In this figure how much force on mass m=5 kg should be applied, so that it just won't slip. Given that car is moving with constant acceleration :
- 170 N
- 180 N
- 250 N
- 150 N
The correct answer is: 150 N
Related Questions to study
physics-
A 4 kg block A is placed at the top of 8 kg block B which rests on a smooth table. A just slips on B when a force of 20 N is applied on A. The maximum horizontal force F required to make both move together is
A 4 kg block A is placed at the top of 8 kg block B which rests on a smooth table. A just slips on B when a force of 20 N is applied on A. The maximum horizontal force F required to make both move together is
physics-General
physics-
A 40 kg slab rests on a frictionless floor. A 10 kg block rests on top of the slab. The coefficient kinetic friction between the block and the slab is 0.40. A horizontal force of 100 N is applied on the 10 kg block. Find the resulting acceleration of the slab.
A 40 kg slab rests on a frictionless floor. A 10 kg block rests on top of the slab. The coefficient kinetic friction between the block and the slab is 0.40. A horizontal force of 100 N is applied on the 10 kg block. Find the resulting acceleration of the slab.
physics-General
physics-
A block of mass m, lying on a rough horizontal plane is acted upon by a horizontal force P and another force Q, inclined at an angle to vertical. The block will remain in equilibrium, if coefficient of friction between it and surface is
A block of mass m, lying on a rough horizontal plane is acted upon by a horizontal force P and another force Q, inclined at an angle to vertical. The block will remain in equilibrium, if coefficient of friction between it and surface is
physics-General
physics-
Block A of mass m rests on the plank B of mass 3m which is free to slide on a frictionless horizontal surface. The coefficient of friction between the block and plank is 0.2. If a horizontal force of magnitude 2mg is applied to the plank B, the acceleration of A relative to the plank and relative to the ground respectively, are:
Block A of mass m rests on the plank B of mass 3m which is free to slide on a frictionless horizontal surface. The coefficient of friction between the block and plank is 0.2. If a horizontal force of magnitude 2mg is applied to the plank B, the acceleration of A relative to the plank and relative to the ground respectively, are:
physics-General
physics-
A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2. The weight of the block is
A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2. The weight of the block is
physics-General
physics-
Block B of mass 100 kg rests on a rough surface of friction coefficient . A rope is tied to block as shown in figure. The maximum acceleration with which boy A of 25 kg can climbs on rope without making block move is :
Block B of mass 100 kg rests on a rough surface of friction coefficient . A rope is tied to block as shown in figure. The maximum acceleration with which boy A of 25 kg can climbs on rope without making block move is :
physics-General
physics-
A block of mass rests on a rough horizontal surface as shown in the figure. Coefficient of friction between the block and the surface is . A force F=mg acting at angle with the vertical side of the block pulls it. In which of the following cases can the block be pulled along the surface ?
A block of mass rests on a rough horizontal surface as shown in the figure. Coefficient of friction between the block and the surface is . A force F=mg acting at angle with the vertical side of the block pulls it. In which of the following cases can the block be pulled along the surface ?
physics-General
physics-
A force acts on block shown. The force of friction acting on the block is :
A force acts on block shown. The force of friction acting on the block is :
physics-General
physics-
In the figure shown, friction is absent. The system moves with constant speed. Then ' , is equal to
In the figure shown, friction is absent. The system moves with constant speed. Then ' , is equal to
physics-General
physics-
The blocks A and B shown in the figure have masses and . The system is released from rest. The speed of B after A has travelled a distance 1 m along the incline is
The blocks A and B shown in the figure have masses and . The system is released from rest. The speed of B after A has travelled a distance 1 m along the incline is
physics-General
physics-
A wedge of mass M is moved with constant acceleration a. A block of mass m attached with the wedge by a light spring moves with an acceleration a'. Just after the wedge is stopped, neglecting friction between the contacting surfaces, the acceleration of the block is
A wedge of mass M is moved with constant acceleration a. A block of mass m attached with the wedge by a light spring moves with an acceleration a'. Just after the wedge is stopped, neglecting friction between the contacting surfaces, the acceleration of the block is
physics-General
physics-
All surfaces shown in figure are smooth. System is released with the spring unstretched. In equilibrium, compression in the spring will be :
All surfaces shown in figure are smooth. System is released with the spring unstretched. In equilibrium, compression in the spring will be :
physics-General
physics-
Three identical blocks are suspended on two identical springs one below the other as shown in figure. If thread is cut that supports block 1 , then initially (choose one alternative only):
Three identical blocks are suspended on two identical springs one below the other as shown in figure. If thread is cut that supports block 1 , then initially (choose one alternative only):
physics-General
physics-
In the given fig, pulley is frictionless and massless. Both the springs are having same force constant 10 N/m. Initially with the string attached to the grounds, the total system is at rest. Now if the string is cut, then immediately after cutting the string,
In the given fig, pulley is frictionless and massless. Both the springs are having same force constant 10 N/m. Initially with the string attached to the grounds, the total system is at rest. Now if the string is cut, then immediately after cutting the string,
physics-General
physics-
Two blocks are connected by a spring. The combination is suspended, at rest, from a string attached to the ceiling, as shown in the figure. The string breaks suddenly. Immediately after the string breaks, what is the initial downward acceleration of the upper block of mass 2 m ?
Two blocks are connected by a spring. The combination is suspended, at rest, from a string attached to the ceiling, as shown in the figure. The string breaks suddenly. Immediately after the string breaks, what is the initial downward acceleration of the upper block of mass 2 m ?
physics-General