Physics-
General
Easy
Question
The figure shows an isosceles triangular plate of mass M and base L. The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X–axis
The moment of inertia of the plate about the y-axis is
-
-
-
- none of these
The correct answer is:
Related Questions to study
physics-
The figure shows an isosceles triangular plate of mass M and base L. The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X–axis
The moment of inertia of the plate about its base parallel to the x-axis is
The figure shows an isosceles triangular plate of mass M and base L. The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X–axis
The moment of inertia of the plate about its base parallel to the x-axis is
physics-General
Physics-
The figure shows an isosceles triangular plate of mass M and base L. The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X–axis
The moment of inertia of the plate about the x-axis is
The figure shows an isosceles triangular plate of mass M and base L. The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X–axis
The moment of inertia of the plate about the x-axis is
Physics-General
physics-
The figure shows an isosceles triangular plate of mass M and base L. The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X–axis
The moment of inertia of the plate about the z-axis is
The figure shows an isosceles triangular plate of mass M and base L. The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X–axis
The moment of inertia of the plate about the z-axis is
physics-General
physics-
The figure shows a uniform rod lying along the x-axis. The locus of all the points lying on the xy-plane, about which the moment of inertia of the rod is same as that about O is
The figure shows a uniform rod lying along the x-axis. The locus of all the points lying on the xy-plane, about which the moment of inertia of the rod is same as that about O is
physics-General
physics-
A square plate of mass M and edge L is shown in figure. The moment of inertia of the plate about the axis in the plane of plate passing through one of its vertex making an angle 15° from horizontal is.
A square plate of mass M and edge L is shown in figure. The moment of inertia of the plate about the axis in the plane of plate passing through one of its vertex making an angle 15° from horizontal is.
physics-General
physics-
Moment of inertia of a semicircular ring of radius R and mass M ; about an axis passing through A and perpendicular to the plane of the paper is
Moment of inertia of a semicircular ring of radius R and mass M ; about an axis passing through A and perpendicular to the plane of the paper is
physics-General
physics-
Moment of inertia of a thin semicircular disc (mass = M & radius = R) about an axis through point O and perpendicular to plane of disc, is given by :
Moment of inertia of a thin semicircular disc (mass = M & radius = R) about an axis through point O and perpendicular to plane of disc, is given by :
physics-General
physics-
In the triangular sheet given PQ = QR = l. If M is the mass of the sheet. What is the moment of inertial about PR
In the triangular sheet given PQ = QR = l. If M is the mass of the sheet. What is the moment of inertial about PR
physics-General
physics-
The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is
The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is
physics-General
Physics-
A thin uniform rod of mass M and length L has its moment of inertia I1 about its perpendicular bisector. The rod is bend in the form of a semicircular arc. Now its moment of inertia through the centre of the semi circular arc and perpendicular to its plane is I2 . The ratio of I1 : I2 will be _______
A thin uniform rod of mass M and length L has its moment of inertia I1 about its perpendicular bisector. The rod is bend in the form of a semicircular arc. Now its moment of inertia through the centre of the semi circular arc and perpendicular to its plane is I2 . The ratio of I1 : I2 will be _______
Physics-General
physics-
Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.
Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.
physics-General
physics-
Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:
Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:
physics-General
physics-
Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB
Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB
physics-General
physics-
A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is The distance of the centre of mass of the system from the mass A is
A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is The distance of the centre of mass of the system from the mass A is
physics-General
Physics-
Identify the correct statement(s) related to the situation when the particle starts moving downward.
Identify the correct statement(s) related to the situation when the particle starts moving downward.
Physics-General