Physics-
General
Easy

Question

Two blocks are connected by a spring. The combination is suspended, at rest, from a string attached to the ceiling, as shown in the figure. The string breaks suddenly. Immediately after the string breaks, what is the initial downward acceleration of the upper block of mass 2m ?

  1. 0    
  2. 3g/2    
  3. g    
  4. 2g    

The correct answer is: 3g/2

Related Questions to study

General
physics-

A particle of mass m is constrained to move on x-axis. A force F acts on the particle. F always points toward the position labeled E. For example, when the particle is to the left of E, F points to the right. The magnitude of F is a constant F except at point E where it is zero. The system is horizontal. F is the net force acting on the particle. The particle is displaced a distance A towards left from the equilibrium position E and released from rest at t = 0.

Find minimum time it will take to reach from x equals negative fraction numerator A over denominator 2 end fraction to 0.

A particle of mass m is constrained to move on x-axis. A force F acts on the particle. F always points toward the position labeled E. For example, when the particle is to the left of E, F points to the right. The magnitude of F is a constant F except at point E where it is zero. The system is horizontal. F is the net force acting on the particle. The particle is displaced a distance A towards left from the equilibrium position E and released from rest at t = 0.

Find minimum time it will take to reach from x equals negative fraction numerator A over denominator 2 end fraction to 0.

physics-General
General
physics-

A particle of mass m is constrained to move on x-axis. A force F acts on the particle. F always points toward the position labeled E. For example, when the particle is to the left of E, F points to the right. The magnitude of F is a constant F except at point E where it is zero. The system is horizontal. F is the net force acting on the particle. The particle is displaced a distance A towards left from the equilibrium position E and released from rest at t = 0.

Velocity – time graph of the particle is

A particle of mass m is constrained to move on x-axis. A force F acts on the particle. F always points toward the position labeled E. For example, when the particle is to the left of E, F points to the right. The magnitude of F is a constant F except at point E where it is zero. The system is horizontal. F is the net force acting on the particle. The particle is displaced a distance A towards left from the equilibrium position E and released from rest at t = 0.

Velocity – time graph of the particle is

physics-General
General
physics-

A particle of mass m is constrained to move on x-axis. A force F acts on the particle. F always points toward the position labeled E. For example, when the particle is to the left of E, F points to the right. The magnitude of F is a constant F except at point E where it is zero. The system is horizontal. F is the net force acting on the particle. The particle is displaced a distance A towards left from the equilibrium position E and released from rest at t = 0.

What is the period of the motion?

A particle of mass m is constrained to move on x-axis. A force F acts on the particle. F always points toward the position labeled E. For example, when the particle is to the left of E, F points to the right. The magnitude of F is a constant F except at point E where it is zero. The system is horizontal. F is the net force acting on the particle. The particle is displaced a distance A towards left from the equilibrium position E and released from rest at t = 0.

What is the period of the motion?

physics-General
parallel
General
physics-

A weight can be hung in any of the following four ways by string of same type. In which case is the string most likely to break?

A weight can be hung in any of the following four ways by string of same type. In which case is the string most likely to break?

physics-General
General
physics-

A stunt man jumps his car over a crater as shown (neglect air resistance)

A stunt man jumps his car over a crater as shown (neglect air resistance)

physics-General
General
physics-

In the figure shown the velocity of different blocks is shown. The velocity of C is

In the figure shown the velocity of different blocks is shown. The velocity of C is

physics-General
parallel
General
physics-

Two masses m and M are attached to the strings as shown in the figure. If the system is in equilibrium, then

Two masses m and M are attached to the strings as shown in the figure. If the system is in equilibrium, then

physics-General
General
physics-

Block of 1 kg is initially in equilibrium and is hanging by two identical springs A and B as shown in figures. If spring A is cut from lower point at t=0 then, find acceleration of block in ms–2 at t = 0.

Block of 1 kg is initially in equilibrium and is hanging by two identical springs A and B as shown in figures. If spring A is cut from lower point at t=0 then, find acceleration of block in ms–2 at t = 0.

physics-General
General
physics-

Find the acceleration of 3 kg mass when acceleration of 2 kg mass is 2 ms–2 as shown in figure.

Find the acceleration of 3 kg mass when acceleration of 2 kg mass is 2 ms–2 as shown in figure.

physics-General
parallel
General
physics-

Both the blocks shown here are of mass m and are moving with constant velocity in direction shown in a resistive medium which exerts equal constant force on both blocks in direction opposite to the velocity. The tension in the string connecting both of them will be : (Neglect friction)

Both the blocks shown here are of mass m and are moving with constant velocity in direction shown in a resistive medium which exerts equal constant force on both blocks in direction opposite to the velocity. The tension in the string connecting both of them will be : (Neglect friction)

physics-General
General
physics-

What should be the minimum force P to be applied to the string so that block of mass m just begins to move up the frictionless plane.

What should be the minimum force P to be applied to the string so that block of mass m just begins to move up the frictionless plane.

physics-General
General
physics-

The equation of a wave disturbance is given as : y equals 0.02 c o s invisible function application open parentheses fraction numerator pi over denominator 2 end fraction plus 50 pi t close parentheses c o s invisible function application left parenthesis 10 pi x right parenthesis where x and y are in meters and t in seconds. Choose the wrong statement:

The equation of a wave disturbance is given as : y equals 0.02 c o s invisible function application open parentheses fraction numerator pi over denominator 2 end fraction plus 50 pi t close parentheses c o s invisible function application left parenthesis 10 pi x right parenthesis where x and y are in meters and t in seconds. Choose the wrong statement:

physics-General
parallel
General
physics-

Four open organ pipes of different lengths and different gases at same temperature as shown in figure. Let fA , fB , fC and fD be their fundamental frequencies then :[Take gamma subscript C O subscript 2 end subscript end subscript equals 7 divided by 5]

Four open organ pipes of different lengths and different gases at same temperature as shown in figure. Let fA , fB , fC and fD be their fundamental frequencies then :[Take gamma subscript C O subscript 2 end subscript end subscript equals 7 divided by 5]

physics-General
General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed

The maximum value of l to produce a minima at D is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed

The maximum value of l to produce a minima at D is given by

physics-General
General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed

The maximum value of lambda to produce a maxima at D is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed

The maximum value of lambda to produce a maxima at D is given by

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.