Physics-
General
Easy
Question
Two boys of equal masses m walk symmetrically on a uniform horizontal plank, which is hinged at mid-point. The graph of force applied by hinge on plank (N) v/s x is
The correct answer is:
Related Questions to study
physics-
Moment of inertia of a rod of mass m and length l about its one end is I. If one fourth of its length is cut away then moment of inertia of the remaining rod about its one end will be
Moment of inertia of a rod of mass m and length l about its one end is I. If one fourth of its length is cut away then moment of inertia of the remaining rod about its one end will be
physics-General
physics-
A wheel comprises of a ring having mass 2m and two rods (mass m and length l) along two diameters as shown. Find moment of inertia of the wheel about an axis passing through point P and perpendicular to the plane of wheel.
A wheel comprises of a ring having mass 2m and two rods (mass m and length l) along two diameters as shown. Find moment of inertia of the wheel about an axis passing through point P and perpendicular to the plane of wheel.
physics-General
physics-
Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.
Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.
physics-General
physics-
From a disc of mass 2 kg and radius 4 m a small disc of radius 1 m is extracted where O' is at distance of 2m from centre O of disc. Find new M.I. about an axis passing through O perpendicular to plane of disc.
From a disc of mass 2 kg and radius 4 m a small disc of radius 1 m is extracted where O' is at distance of 2m from centre O of disc. Find new M.I. about an axis passing through O perpendicular to plane of disc.
physics-General
physics-
Two identical hollow spheres of mass M and radius R are joined together, and the combination is rotated about an axis tangent to one sphere and perpendicular to the line connecting them. The rotational inertia of the combination is
Two identical hollow spheres of mass M and radius R are joined together, and the combination is rotated about an axis tangent to one sphere and perpendicular to the line connecting them. The rotational inertia of the combination is
physics-General
physics-
Four point masses 2kg, 4 kg, 6kg and 8kg are placed at four corners of a square of side 10cm. The radius of gyration of system about an axis passing through centre O and perpendicular to square plane is
Four point masses 2kg, 4 kg, 6kg and 8kg are placed at four corners of a square of side 10cm. The radius of gyration of system about an axis passing through centre O and perpendicular to square plane is
physics-General
physics-
Figure shows an isosceles triangular plate of mass M and base length l. The apex lies at the origin and the angle at the apex is 90°. The base is parallel to x-axis. The moment of inertia of the plate about the x-axis is
Figure shows an isosceles triangular plate of mass M and base length l. The apex lies at the origin and the angle at the apex is 90°. The base is parallel to x-axis. The moment of inertia of the plate about the x-axis is
physics-General
physics-
Two identical rings each of mass m with their planes mutually perpendicular, radius R are welded at their point of contact O. If the system is free to rotate about an axis passing through the point P perpendicular to the plane of the paper the moment of inertia of the system about this axis is equal to
Two identical rings each of mass m with their planes mutually perpendicular, radius R are welded at their point of contact O. If the system is free to rotate about an axis passing through the point P perpendicular to the plane of the paper the moment of inertia of the system about this axis is equal to
physics-General
physics-
Moment of inertial of a triangle plane of mass M shown in figure about vertical axis AB is :
Moment of inertial of a triangle plane of mass M shown in figure about vertical axis AB is :
physics-General
physics-
The figure below shows four parallel plate capacitors : A, B, C and D. Each capacitor carries the same charge q and has the same plate area A. As suggested by the figure, the plates of capacitors A and C are separated by a distance d while those of B and D are separated by a distance 2d. Capacitors A and B are maintained in vacuum while capacitors C and D contain = 5.kdielectrics with constant
Which capacitor has the largest potential difference between its plates?
The figure below shows four parallel plate capacitors : A, B, C and D. Each capacitor carries the same charge q and has the same plate area A. As suggested by the figure, the plates of capacitors A and C are separated by a distance d while those of B and D are separated by a distance 2d. Capacitors A and B are maintained in vacuum while capacitors C and D contain = 5.kdielectrics with constant
Which capacitor has the largest potential difference between its plates?
physics-General
physics-
The figure below shows four parallel plate capacitors : A, B, C and D. Each capacitor carries the same charge q and has the same plate area A. As suggested by the figure, the plates of capacitors A and C are separated by a distance d while those of B and D are separated by a distance 2d. Capacitors A and B are maintained in vacuum while capacitors C and D contain = 5.kdielectrics with constant
Which list below places the capacitors in order of increasing capacitance?
The figure below shows four parallel plate capacitors : A, B, C and D. Each capacitor carries the same charge q and has the same plate area A. As suggested by the figure, the plates of capacitors A and C are separated by a distance d while those of B and D are separated by a distance 2d. Capacitors A and B are maintained in vacuum while capacitors C and D contain = 5.kdielectrics with constant
Which list below places the capacitors in order of increasing capacitance?
physics-General
physics-
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
The time, at which charge in the capacitor C is reduced to half of the value it had at t = 0, is
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
The time, at which charge in the capacitor C is reduced to half of the value it had at t = 0, is
physics-General
physics-
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
The energy lost between t = 0 to t =¥ is
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
The energy lost between t = 0 to t =¥ is
physics-General
physics-
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
The current decreases exponentially between t = 0 to t = ¥ The time constant is
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
The current decreases exponentially between t = 0 to t = ¥ The time constant is
physics-General
physics-
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
At when a new steady state has been established, the charges held by capacitors C and 2C will respectively be
Consider the circuit in the figure. The switch is initially in position A for a sufficiently long time to establish a steady state. At t = 0, the switch is turned to position B. The capacitor 2C did not hold any charge before t = 0.
At when a new steady state has been established, the charges held by capacitors C and 2C will respectively be
physics-General