Maths-
General
Easy

Question

The value of sin invisible function application open parentheses a over 2 close parentheses open curly brackets 1 half plus sum from k equals 1 to n of   cos invisible function application left parenthesis k a right parenthesis close curly brackets is equal to

  1. 1 half sin invisible function application open parentheses open parentheses n plus 1 half close parentheses a close parentheses
  2. 1 half sin invisible function application open parentheses open parentheses n minus 1 half close parentheses a close parentheses
  3. sin invisible function application left parenthesis n plus 1 right parenthesis a
  4. cos invisible function application left parenthesis n plus 1 right parenthesis a invisible function application

The correct answer is: 1 half sin invisible function application open parentheses open parentheses n plus 1 half close parentheses a close parentheses

Related Questions to study

General
Chemistry-

depending upon its numerical value 8. Solubility of a substance which dissolves with a decrease in volume and absorption of heat will be favoured by

depending upon its numerical value 8. Solubility of a substance which dissolves with a decrease in volume and absorption of heat will be favoured by

Chemistry-General
General
Maths-

L t subscript left parenthesis x rightwards arrow a right parenthesis left parenthesis x s i n invisible function application a minus a s i n invisible function application x right parenthesis divided by left parenthesis x minus a right parenthesis

L t subscript left parenthesis x rightwards arrow a right parenthesis left parenthesis x s i n invisible function application a minus a s i n invisible function application x right parenthesis divided by left parenthesis x minus a right parenthesis

Maths-General
General
Maths-

L t subscript left parenthesis x rightwards arrow a right parenthesis left parenthesis t a n invisible function application left parenthesis x minus a right parenthesis right parenthesis divided by left parenthesis x squared minus a squared right parenthesis left parenthesis a not equal to 0 right parenthesis

L t subscript left parenthesis x rightwards arrow a right parenthesis left parenthesis t a n invisible function application left parenthesis x minus a right parenthesis right parenthesis divided by left parenthesis x squared minus a squared right parenthesis left parenthesis a not equal to 0 right parenthesis

Maths-General
parallel
General
Chemistry-

For the reaction N subscript 2 end subscript O subscript 4 end subscript left parenthesis g right parenthesis 2 N O subscript 2 end subscript left parenthesis g right parenthesis, the degree of dissociation at equilibrium is 0.2 at 1 atm pressure. The equilibrium constant Kp will be

For the reaction N subscript 2 end subscript O subscript 4 end subscript left parenthesis g right parenthesis 2 N O subscript 2 end subscript left parenthesis g right parenthesis, the degree of dissociation at equilibrium is 0.2 at 1 atm pressure. The equilibrium constant Kp will be

Chemistry-General
General
Chemistry-

1 mole of A (g) is heated to 30000 C in closed one liter vessel till the following equilibrium is reached A(g) B(g). The equilibrium constant for the reaction at 3000C is 4. What is the concentration of B (in mol. lit–1 at equilibrium?

1 mole of A (g) is heated to 30000 C in closed one liter vessel till the following equilibrium is reached A(g) B(g). The equilibrium constant for the reaction at 3000C is 4. What is the concentration of B (in mol. lit–1 at equilibrium?

Chemistry-General
General
Maths-

L t subscript left parenthesis y rightwards arrow 0 right parenthesis invisible function application left parenthesis s i n invisible function application left parenthesis a plus b x right parenthesis minus s i n invisible function application left parenthesis a minus b x right parenthesis right parenthesis divided by x

L t subscript left parenthesis y rightwards arrow 0 right parenthesis invisible function application left parenthesis s i n invisible function application left parenthesis a plus b x right parenthesis minus s i n invisible function application left parenthesis a minus b x right parenthesis right parenthesis divided by x

Maths-General
parallel
General
Maths-

L t subscript left parenthesis x plus x divided by 2 right parenthesis left parenthesis c o s x right parenthesis divided by left parenthesis x minus pi divided by 2 right parenthesis

L t subscript left parenthesis x plus x divided by 2 right parenthesis left parenthesis c o s x right parenthesis divided by left parenthesis x minus pi divided by 2 right parenthesis

Maths-General
General
Maths-

L t left parenthesis x rightwards arrow 1 right parenthesis left parenthesis l o g subscript e superscript x right parenthesis divided by left parenthesis x minus 1 right parenthesis

L t left parenthesis x rightwards arrow 1 right parenthesis left parenthesis l o g subscript e superscript x right parenthesis divided by left parenthesis x minus 1 right parenthesis

Maths-General
General
Maths-

L t left parenthesis x rightwards arrow 0 right parenthesis left parenthesis e to the power of x minus s i n space x minus 1 right parenthesis divided by x

L t left parenthesis x rightwards arrow 0 right parenthesis left parenthesis e to the power of x minus s i n space x minus 1 right parenthesis divided by x

Maths-General
parallel
General
Maths-

The value of ‘c’ in Rolle’s theorem for f left parenthesis x right parenthesis equals log invisible function application open parentheses x squared plus 2 close parentheses minus log invisible function application 3 on [-1,1]

For such questions, we should know the properties of Rolle's theorem.

The value of ‘c’ in Rolle’s theorem for f left parenthesis x right parenthesis equals log invisible function application open parentheses x squared plus 2 close parentheses minus log invisible function application 3 on [-1,1]

Maths-General

For such questions, we should know the properties of Rolle's theorem.

General
Maths-

To verify Lagrange’s mean value theorem, there exists at least one point celement of(a,b) such that

To verify Lagrange’s mean value theorem, there exists at least one point celement of(a,b) such that

Maths-General
General
Maths-

Rolle’s Theorem is not applicable for?

Rolle’s Theorem is not applicable for?

Maths-General
parallel
General
Maths-

To verify Rolle’s Theorem there exists at least one point celement of(a, b) such that

To verify Rolle’s Theorem there exists at least one point celement of(a, b) such that

Maths-General
General
Maths-

Let P(x)be a real polynomial of degree 4 having extreme values at x=1 and x=2 if lim for x not stretchy rightwards arrow 0 of   fraction numerator p left parenthesis x right parenthesis over denominator x squared end fraction equals 1 then p(4) is equal to

Let P(x)be a real polynomial of degree 4 having extreme values at x=1 and x=2 if lim for x not stretchy rightwards arrow 0 of   fraction numerator p left parenthesis x right parenthesis over denominator x squared end fraction equals 1 then p(4) is equal to

Maths-General
General
Maths-

L t left parenthesis x rightwards arrow 4 right parenthesis space left parenthesis a to the power of x minus 1 right parenthesis divided by left parenthesis b to the power of x minus 1 right parenthesis left parenthesis a greater than 0 comma b greater than 0 comma b not equal to 1 right parenthesis

L t left parenthesis x rightwards arrow 4 right parenthesis space left parenthesis a to the power of x minus 1 right parenthesis divided by left parenthesis b to the power of x minus 1 right parenthesis left parenthesis a greater than 0 comma b greater than 0 comma b not equal to 1 right parenthesis

Maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.