Question
Use a table to find the product.
(𝑥 − 6) (3𝑥 + 4)
The correct answer is: 3x2 - 14x – 24.
Answer:
- Given:
(x - 6) (3x + 4)
- Step 1:
- Step 2:
Add all terms:
(3x2 + 4x - 18x - 24)
= 3x2 - 14x - 24
Hence,
(2x + 1) (4x + 1) = 3x2 - 14x - 24
- Final Answer:
3x2 - 14x – 24.
- Given:
Hence,
Related Questions to study
Why the product of two binomials (𝑎 + 𝑏) and (𝑎 − 𝑏) is a binomial instead of a trinomial?
Why the product of two binomials (𝑎 + 𝑏) and (𝑎 − 𝑏) is a binomial instead of a trinomial?
Graph the equation
We can find the tabular values for any points of x and then plot them on the graph. But we usually choose values for which calculating y is easier. This makes plotting the graph simpler. We can also find the values by putting different values of y in the equation to get different values for x. Either way, we need points satisfying the equation to plot its graph.
Graph the equation
We can find the tabular values for any points of x and then plot them on the graph. But we usually choose values for which calculating y is easier. This makes plotting the graph simpler. We can also find the values by putting different values of y in the equation to get different values for x. Either way, we need points satisfying the equation to plot its graph.
The constant term in the product (𝑥 + 3) (𝑥 + 4) is
The constant term in the product (𝑥 + 3) (𝑥 + 4) is
Write the product in standard form. (3𝑦 − 5)(3𝑦 + 5)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (3𝑦 − 5)(3𝑦 + 5)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (𝑥 − 4)(𝑥 + 4)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (𝑥 − 4)(𝑥 + 4)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
The area of the rectangle is 𝑥2 + 11𝑥 + 28. Its length is x + __ and its width is __+ 4. Find the missing terms in the length and the width.
The area of the rectangle is 𝑥2 + 11𝑥 + 28. Its length is x + __ and its width is __+ 4. Find the missing terms in the length and the width.
Simplify: 12 - [13a - 4(5a -7) - 8 {2a -(20a - 3a)}]
Simplify: 12 - [13a - 4(5a -7) - 8 {2a -(20a - 3a)}]
Write the product in standard form. (2𝑥 + 5)2
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Write the product in standard form. (2𝑥 + 5)2
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Write the product in standard form. (𝑥 − 7)2
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
Write the product in standard form. (𝑥 − 7)2
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
(𝑥 + 9)(𝑥 + 9) =
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
(𝑥 + 9)(𝑥 + 9) =
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Find the area of the rectangle.
Find the area of the rectangle.
The table below shows the distance a train traveled over time. How can you determine the equation that represents this relationships.
The table below shows the distance a train traveled over time. How can you determine the equation that represents this relationships.
Simplify: 4x2(7x -5) -6x2(2 -4x)+ 18x3
Simplify: 4x2(7x -5) -6x2(2 -4x)+ 18x3
(𝑎 + (−3))2 =
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
(𝑎 + (−3))2 =
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2