Chemistry-
General
Easy

Question

Which of the following has no action with starch solution?

  1. F subscript 2 space a n d space C l subscript 2
  2. B r subscript 2
  3. I subscript 2
  4. None of these

The correct answer is: F subscript 2 space a n d space C l subscript 2


    0 F subscript 2 space a n d space C l subscript 2 space h a v e space n o space a c t i o n space o n space s t a r c h space s o l u t i o n semicolon space B r subscript 2 space t u r n s space i t space b r o w n comma space I subscript 2 space t u r n s space i t space b l u e.

    Related Questions to study

    General
    Maths-

    Let three matrices A = open square brackets table row 2 1 row 4 1 end table close square brackets; B = open square brackets table row 3 4 row 2 3 end table close square bracketsand C = open square brackets table row 3 cell – 4 end cell row cell – 2 end cell 3 end table close square brackets then tr(A) + tropen parentheses fraction numerator A B C over denominator 2 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 2 end exponent over denominator 4 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 3 end exponent over denominator 8 end fraction close parentheses+ ....... + straight infinity =

    Let three matrices A = open square brackets table row 2 1 row 4 1 end table close square brackets; B = open square brackets table row 3 4 row 2 3 end table close square bracketsand C = open square brackets table row 3 cell – 4 end cell row cell – 2 end cell 3 end table close square brackets then tr(A) + tropen parentheses fraction numerator A B C over denominator 2 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 2 end exponent over denominator 4 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 3 end exponent over denominator 8 end fraction close parentheses+ ....... + straight infinity =

    Maths-General
    General
    Maths-

    A = open square brackets table row 1 cell tan invisible function application x end cell row cell – tan invisible function application x end cell 1 end table close square brackets then let us define a function f(x) = dt.(ATA–1) then which of the following can not be the value of fraction numerator f open parentheses f open parentheses f open parentheses f............ f left parenthesis x right parenthesis close parentheses close parentheses close parentheses over denominator n t i m e s end fraction is (n ≥ 2)

    A = open square brackets table row 1 cell tan invisible function application x end cell row cell – tan invisible function application x end cell 1 end table close square brackets then let us define a function f(x) = dt.(ATA–1) then which of the following can not be the value of fraction numerator f open parentheses f open parentheses f open parentheses f............ f left parenthesis x right parenthesis close parentheses close parentheses close parentheses over denominator n t i m e s end fraction is (n ≥ 2)

    Maths-General
    General
    Maths-

    Let A, B, C, D be (not necessarily square) real matrices such that AT = BCD; BT = CDA; CT = DAB and DT = ABC for the matrix S = ABCD, consider the two statements.
    I. S3 = S
    II. S2 = S4

    Let A, B, C, D be (not necessarily square) real matrices such that AT = BCD; BT = CDA; CT = DAB and DT = ABC for the matrix S = ABCD, consider the two statements.
    I. S3 = S
    II. S2 = S4

    Maths-General
    parallel
    General
    Maths-

    Let A =open square brackets table row 1 cell sin invisible function application theta end cell 1 row cell – sin invisible function application theta end cell 1 cell sin invisible function application theta end cell row cell – 1 end cell cell – sin invisible function application theta end cell 1 end table close square brackets, where 0 ≤ θ < 2pi, then

    Let A =open square brackets table row 1 cell sin invisible function application theta end cell 1 row cell – sin invisible function application theta end cell 1 cell sin invisible function application theta end cell row cell – 1 end cell cell – sin invisible function application theta end cell 1 end table close square brackets, where 0 ≤ θ < 2pi, then

    Maths-General
    General
    Maths-

    If A is matrix such that A2 + A + 2I = O, then which of the following is INCORRECT ?
    (Where I is unit matrix of orde r 2 and O is null matrix of order 2)

    inverse of a matrix exists when the determinant of the matrix is 0.
    any matrix multiplied by the identity matrix of the same order gives the same matrix.

    If A is matrix such that A2 + A + 2I = O, then which of the following is INCORRECT ?
    (Where I is unit matrix of orde r 2 and O is null matrix of order 2)

    Maths-General

    inverse of a matrix exists when the determinant of the matrix is 0.
    any matrix multiplied by the identity matrix of the same order gives the same matrix.

    General
    Maths-

    Identify the incorrect statement in respect of two square matrices A and B conformable for sum and product.

    trace of a matrix is the sum of the diagonal elements of a matrix.

    Identify the incorrect statement in respect of two square matrices A and B conformable for sum and product.

    Maths-General

    trace of a matrix is the sum of the diagonal elements of a matrix.

    parallel
    General
    chemistry-

    In the reaction 3 Br subscript 2 plus 6 CO subscript 3 superscript 2 minus end superscript plus 3 straight H subscript 2 straight O not stretchy rightwards arrow 5 Br to the power of ⊖ plus BrO subscript 3 superscript ⊖ plus 6 HCO subscript 3 superscript ⊖

    In the reaction 3 Br subscript 2 plus 6 CO subscript 3 superscript 2 minus end superscript plus 3 straight H subscript 2 straight O not stretchy rightwards arrow 5 Br to the power of ⊖ plus BrO subscript 3 superscript ⊖ plus 6 HCO subscript 3 superscript ⊖

    chemistry-General
    General
    Maths-

    A is an involutary matrix given by A = open square brackets table row 0 1 cell – 1 end cell row 4 cell – 3 end cell 4 row 3 cell – 3 end cell 4 end table close square brackets then inverse of fraction numerator A over denominator 2 end fraction will be

    an involutary matrix is one which follows the property A2= I, I = identity matrix of 3rd order.

    A is an involutary matrix given by A = open square brackets table row 0 1 cell – 1 end cell row 4 cell – 3 end cell 4 row 3 cell – 3 end cell 4 end table close square brackets then inverse of fraction numerator A over denominator 2 end fraction will be

    Maths-General

    an involutary matrix is one which follows the property A2= I, I = identity matrix of 3rd order.

    General
    maths-

    Consider the matrix A, B, C, D with order 2 × 3, 3×4, 4×4, 4×2 respectively. Let x = (alpha A B gamma C2 D)3 where alphagamma are scalars . Let |x| = k|ABC2D|3, then k is

    Consider the matrix A, B, C, D with order 2 × 3, 3×4, 4×4, 4×2 respectively. Let x = (alpha A B gamma C2 D)3 where alphagamma are scalars . Let |x| = k|ABC2D|3, then k is

    maths-General
    parallel
    General
    maths-

    If A3 = O , then I + A + A2 equals

    If A3 = O , then I + A + A2 equals

    maths-General
    General
    Maths-

    Let A open square brackets table row 1 2 row 3 4 end table close square brackets and B = open square brackets table row a b row c d end table close square brackets are two matrices such that AB = BA and c ≠ 0, then value of fraction numerator a minus d over denominator 3 b minus c end fraction is

    Let A open square brackets table row 1 2 row 3 4 end table close square brackets and B = open square brackets table row a b row c d end table close square brackets are two matrices such that AB = BA and c ≠ 0, then value of fraction numerator a minus d over denominator 3 b minus c end fraction is

    Maths-General
    General
    maths-

    If A and B are two matrices such that AB = B and BA = A, then

    If A and B are two matrices such that AB = B and BA = A, then

    maths-General
    parallel
    General
    maths-

    A and B are square matrices and A is non-singular matrix, (A–1BA)n, nelement of I+, is equal to

    A and B are square matrices and A is non-singular matrix, (A–1BA)n, nelement of I+, is equal to

    maths-General
    General
    maths-

    If A = fraction numerator 1 over denominator 9 end fraction open square brackets table row cell negative 8 end cell 1 4 row 4 4 7 row 1 cell negative 8 end cell 4 end table close square brackets then A is -

    If A = fraction numerator 1 over denominator 9 end fraction open square brackets table row cell negative 8 end cell 1 4 row 4 4 7 row 1 cell negative 8 end cell 4 end table close square brackets then A is -

    maths-General
    General
    maths-

    Section-wise expenditure of a State Govt. is shown in the given figure. The expenditure incurred on transport is

    Section-wise expenditure of a State Govt. is shown in the given figure. The expenditure incurred on transport is

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.