Maths-
General
Easy

Question

A cubic polynomial f(x) = ax3 + bx2 + cx + d has a graph which touches the x-axis at 2, has another x-intercept at –1 and has y-intercept at –2 as shown. The value of, a + b + c + d equals

  1. –2    
  2. –1    
  3. 0    
  4. 1    

hintHint:

I n space t h i s space q u e s t i o n comma space w e space a r e space g i v e n space a space f u n c t i o n space w i t h space u n k n o w n space c o n s tan t s space a n d space t h e i r space g r a p h.
space W e space h a v e space t o space f i n d space t h e space v a l u e s space o f space t h e s e space c o n s tan t s. space S o comma space w e space w i l l space f i n d space t h e space v a l u e s space o f space t h e space f u n c t i o n space a t space d i f f e r e n t space v a l u e s space o f space x space comma space t h e n space s o l v e space t h e m space t o space g e t space t h e space v a l u e s space o f space a comma b comma c comma d space. space
T h e space p o i n t space t o space r e m e m b e r space h e r e space i s comma space sin c e comma space i t space h a s space a space tan g e n t space a t space t h e space x minus a x i s space a t space t h e space p o i n t space 2 space comma space s o comma space t h e space d e r i v a t i v e space o f space t h i s space f u n c t i o n space a t space t h e space p o i n t space 2 space w i l l space b e space z e r o.

The correct answer is: –1


    W e space a r e space g i v e n space a space f u n c t i o n space w i t h space u n k n o w n space c o n s tan t s space
f left parenthesis x right parenthesis equals a x cubed plus b x squared plus c x plus d space a n d space i t s space g r a p h.


    T o space f i n d space t h e space v a l u e s space o f space a space comma space b space comma space c space a n d space d space.

F i r s t comma space w e space w i l l space d i f f e r e n t i a t e space t h e space g i v e n space f u n c t i o n space a n d space f i n d space i t s space v a l u e space a t space x equals 2 space.

O n space d i f f e r e n t i a t i n g comma space w e space g e t comma space f prime left parenthesis x right parenthesis equals 3 a x squared plus 2 b x plus c space comma space

n o w comma space p u t t i n g space x equals 2 space i n space i t comma space w e space g e t comma

space f prime left parenthesis x right parenthesis equals 3 a left parenthesis 2 right parenthesis squared plus 2 b left parenthesis 2 right parenthesis plus c space comma space i. e. comma space f prime left parenthesis 2 right parenthesis equals 12 a plus 4 b plus c space.
     
    F r o m space t h e space g r a p h comma space i t space i s space c l e a r space t h a t comma space space f apostrophe left parenthesis 2 right parenthesis equals 0 space comma space i. e. comma space 8 a plus 4 b plus c equals 0 space horizontal ellipsis space left parenthesis 1 right parenthesis

A l s o comma space f r o m space t h e space g r a p h comma space f left parenthesis 2 right parenthesis equals 0 space comma space f left parenthesis negative 1 right parenthesis equals 0 space a n d space f left parenthesis 0 right parenthesis equals negative 2 space comma space s o comma space f i r s t space p u t t i n g comma space x equals 2 space i n space t h e space g i v e n space f u n c t i o n space f left parenthesis 2 right parenthesis equals 8 a plus 4 b plus 2 c plus d equals 0 space comma
space t h e n comma space p u t t i n g comma space x equals negative 1 space comma space w e space g e t comma space f left parenthesis negative 1 right parenthesis equals negative a plus b minus c plus d equals 0 space a n d
space f i n a l l y comma space p u t t i n g space x equals 0 space comma space w e space g e t comma space f left parenthesis 0 right parenthesis equals d equals negative 2 space.

N o w comma space sin c e space w e space h a v e space t h e space v a l u e space o f space d space comma space s o space w e space w i l l space p u t space i t space i n space a l l space e q u a t i o n s comma space t h e n space t h e space e q u a t i o n space b e c o m e s comma

f left parenthesis negative 1 right parenthesis equals negative a plus b minus c equals 2

space f left parenthesis 2 right parenthesis equals 8 a plus 4 b plus 2 c equals 2

space f apostrophe left parenthesis 2 right parenthesis equals 8 a plus 4 b plus c equals 0

O n space s o l v i n g space t h e s e space e q u a t i o n s space s i m u l tan e o u s l y comma space w e space g e t comma space a equals fraction numerator negative 1 over denominator 2 end fraction space comma space b equals 3 over 2 comma space c equals 0 space a n d space d equals negative 2 space.
    H e n c e comma space t h e space v a l u e space o f space a plus b plus c plus d equals fraction numerator negative 1 over denominator 2 end fraction plus 3 over 2 plus 0 minus 2 space equals space minus 1

    I f space a space f u n c t i o n space h a s space a space tan g e n t space a t space a space p o i n t space x equals a space comma space t h e n comma space i t space m e a n s comma space i t space i s space t h e space c r i t i c a l space p o i n t space o f space t h a t space f u n c t i o n space a n d space t h e space d e r i v a t i v e space o f space t h e space f u n c t i o n space i s space z e r o space a t space t h a t space p o i n t. space
P e r f o r m space t h e space c a l c u l a t i o n s space c a r e f u l l y comma space t o space a v o i d space s i l l y space m i s t a k e s.
space O n e space s h o u l d space k n o w space h o w space t o space r e a d space a space g r a p h space t o space s o l v e space s u c h space q u e s t i o n s.

    Related Questions to study

    General
    Maths-

    Consider f(x) = |1–x| 1 £ x £ 2 and g(x )= f(x) + b sin invisible function application fraction numerator pi over denominator 2 end fraction x, 1 £ x £ 2 then which of the following is correct?

    Consider f(x) = |1–x| 1 £ x £ 2 and g(x )= f(x) + b sin invisible function application fraction numerator pi over denominator 2 end fraction x, 1 £ x £ 2 then which of the following is correct?

    Maths-General
    General
    Maths-

    The value of c in Lagrange’s theorem for the function f(x) = log sin x in the interval open square brackets fraction numerator pi over denominator 6 end fraction comma fraction numerator 5 pi over denominator 6 end fraction close square bracketsis -

    The value of c in Lagrange’s theorem for the function f(x) = log sin x in the interval open square brackets fraction numerator pi over denominator 6 end fraction comma fraction numerator 5 pi over denominator 6 end fraction close square bracketsis -

    Maths-General
    General
    physics

    The relation between time and displacement of a moving particle is given by t equals 2 a x squaredwhere alpha is a constant. The shape of the graph  is x not stretchy rightwards arrow y is....

    The relation between time and displacement of a moving particle is given by t equals 2 a x squaredwhere alpha is a constant. The shape of the graph  is x not stretchy rightwards arrow y is....

    physicsGeneral
    parallel
    General
    Maths-

    If P (q) and Q open parentheses fraction numerator pi over denominator 2 end fraction plus theta close parentheses are two points on the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1, then locus of the mid – point of PQ is

    If P (q) and Q open parentheses fraction numerator pi over denominator 2 end fraction plus theta close parentheses are two points on the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1, then locus of the mid – point of PQ is

    Maths-General
    General
    Maths-

    If CP and CD are semi – conjugate diameters of an ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 comma then CP2 + CD2 =

    If CP and CD are semi – conjugate diameters of an ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 comma then CP2 + CD2 =

    Maths-General
    General
    Maths-

    The normals to the curve x = a (theta + sin theta), y = a (1 – cos theta) at the points theta = (2n + 1) pi, n element of I are all -

    The normals to the curve x = a (theta + sin theta), y = a (1 – cos theta) at the points theta = (2n + 1) pi, n element of I are all -

    Maths-General
    parallel
    General
    Maths-

    The normal to the curve x = 3 cos thetacos cubed theta, y = 3 sin thetasin cubedtheta at the point theta = pi/4 passes through the point -

    The normal to the curve x = 3 cos thetacos cubed theta, y = 3 sin thetasin cubedtheta at the point theta = pi/4 passes through the point -

    Maths-General
    General
    Maths-

    The normal of the curve given by the equation x = a (sintheta + costheta), y = a (sintheta – costheta) at the point Q is -

    The normal of the curve given by the equation x = a (sintheta + costheta), y = a (sintheta – costheta) at the point Q is -

    Maths-General
    General
    Maths-

    If the tangent at ‘t’ on the curve y = 8 t cubed space minus 1x = 4 t squared space plus space 3 meets the curve again at t subscript 1 and is normal to the curve at that point, then value of t must be -

    If the tangent at ‘t’ on the curve y = 8 t cubed space minus 1x = 4 t squared space plus space 3 meets the curve again at t subscript 1 and is normal to the curve at that point, then value of t must be -

    Maths-General
    parallel
    General
    Maths-

    The tangent at (t, t squared – t cubed) on the curve y = x squared – x cubed meets the curve again at Q, then abscissa of Q must be -

    The tangent at (t, t squared – t cubed) on the curve y = x squared – x cubed meets the curve again at Q, then abscissa of Q must be -

    Maths-General
    General
    Maths-

    If fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction = 1 is a tangent to the curve x = 4t,y =fraction numerator 4 over denominator t end fraction, t element of R then -

    If fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction = 1 is a tangent to the curve x = 4t,y =fraction numerator 4 over denominator t end fraction, t element of R then -

    Maths-General
    General
    Maths-

    The line fraction numerator x over denominator a end fraction + fraction numerator y over denominator b end fraction = 1 touches the curve  y space equals space b e to the power of negative x over a end exponent at the point :

    The line fraction numerator x over denominator a end fraction + fraction numerator y over denominator b end fraction = 1 touches the curve  y space equals space b e to the power of negative x over a end exponent at the point :

    Maths-General
    parallel
    General
    physics

    An object moves in a straight line. It starts from the rest and its acceleration is . 2 ms2.After reaching a certain point it comes back to the original point. In this movement its acceleration  is -3 ms2, till it comes to rest. The total time taken for the movement is 5 second. Calculate the maximum velocity.

    An object moves in a straight line. It starts from the rest and its acceleration is . 2 ms2.After reaching a certain point it comes back to the original point. In this movement its acceleration  is -3 ms2, till it comes to rest. The total time taken for the movement is 5 second. Calculate the maximum velocity.

    physicsGeneral
    General
    Maths-

    For the ellipse fraction numerator x to the power of 2 end exponent over denominator 2 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 1 end fraction equals 1 comma the foci are

    For the ellipse fraction numerator x to the power of 2 end exponent over denominator 2 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 1 end fraction equals 1 comma the foci are

    Maths-General
    General
    Maths-

    For the ellipse x squared over 4 plus y squared over 1 equals 1, the latus rectum is

    For the ellipse x squared over 4 plus y squared over 1 equals 1, the latus rectum is

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.