Question
Area bounded by curve
‐axis between
and
is
- clog 3
units
units
units
units
Hint:
We are given the equation of curve. We have to find the area of the curve. The limits on x axis is x = 1 and x = 2.
The correct answer is:
units
The given equation is xy = c
We will rearrange the equation in terms of x
.
This is the equation of the area of the curve. To find the area we will integrate the above equation.

So, area of the given curve is 2clog2 sq. units.
For such questions, we should know different formulas of integrals.
Related Questions to study
If
, then
is equal to
If
, then
is equal to
The integral
is equal to
The integral
is equal to
The solution for
of the equation
is
The solution for
of the equation
is
If the differential equation representing the family of all circles touching
‐axis at the origin is
equals
If the differential equation representing the family of all circles touching
‐axis at the origin is
equals
Which one of the following is a differential equation of the family of curves 
Which one of the following is a differential equation of the family of curves 
A function
has a second‐order derivatives
1) If its graph passes through the point
and at that point the tangent to the grraph
, then the function is
For such questions, the important part is integration. We should know the methods to integrate the derivate. We should know the properties of a tangent.
A function
has a second‐order derivatives
1) If its graph passes through the point
and at that point the tangent to the grraph
, then the function is
For such questions, the important part is integration. We should know the methods to integrate the derivate. We should know the properties of a tangent.
The differential equation
(
is any constant) represents
For such questions, we know different methods to solve differential equations. We should also know the formulas of different shapes.
The differential equation
(
is any constant) represents
For such questions, we know different methods to solve differential equations. We should also know the formulas of different shapes.
An integrating factor of the differential equation
is
An integrating factor of the differential equation
is
The solution of the differential equation
is
For such questions, we should know different methods to solve differential equation.
The solution of the differential equation
is
For such questions, we should know different methods to solve differential equation.
The solution of
is
The solution of
is
is a solution of the differential equation —.
For such questions, we should know different method to solve differential equation.
is a solution of the differential equation —.
For such questions, we should know different method to solve differential equation.
The degree of the differential equation
is
For such questions, we should know the definition of power.
The degree of the differential equation
is
For such questions, we should know the definition of power.