Maths-
General
Easy

Question

How many different nine digit numbers can be formed from the number 223355888 by rearranging its digits so that the odd digits occupy even position ?

  1. 16    
  2. 36    
  3. 60    
  4. 180    

hintHint:

Here we need to find the total number of nine digit numbers that can be formed using the given digits. We will count the number of even places present for the odd digits and then we will find the number of odd places present for the even digits. Then we will find the number of ways to arrange the odd digits and then we will find the number of ways to arrange the even digits and to get the final answer, we will multiply both of them.

The correct answer is: 60


    Detailed Solution
    Here we need to find the total number of nine digit numbers that can be formed using the given digits i.e. 2, 2, 3, 3, 5, 5, 8, 8, 8.
    X minus X minus X minus X minus X
    H e r e comma space s y m b o l space left parenthesis negative right parenthesis space space i s space f o r space t h e space e v e n space p l a c e s space a n d space left parenthesis X right parenthesis space space i s space f o r space t h e space o d d space p l a c e s space o f space t h e space d i g i t space n u m b e r.
    The digits which are even are 2, 2, 8, 8 and 8.
    N u m b e r space o f space e v e n space d i g i t s space equals 5
    The digits which are odd are 3, 3, 5 and 5.
    N u m b e r space o f space o d d space d i g i t s space equals 4
    We have to arrange the odd digits in even places.
    N u m b e r space o f space w a y s space t o space a r r a n g e space t h e space o d d space d i g i t s space i n space 4 space e v e n space p l a c e s space equals fraction numerator 4 factorial over denominator 2 factorial cross times 2 factorial end fraction
    On finding the value of the factorials, we get
    N u m b e r space o f space w a y s space t o space a r r a n g e space t h e space o d d space d i g i t s space i n space 4 space e v e n space p l a c e s space equals fraction numerator 4 cross times 3 cross times 2 cross times 1 over denominator 2 cross times 1 cross times 2 cross times 1 end fraction
    On further simplification, we get
    N u m b e r space o f space w a y s space t o space a r r a n g e space t h e space o d d space d i g i t s space i n space 4 space e v e n space p l a c e s space equals 6
    Now, we have to arrange the even digits in odd places.
    N u m b e r space o f space w a y s space t o space a r r a n g e space t h e space e v e n space d i g i t s space i n space 5 space o d d space p l a c e s space equals space fraction numerator 5 factorial over denominator space 2 factorial cross times 3 factorial end fraction
    On finding the value of the factorials, we get

    N u m b e r space o f space w a y s space t o space a r r a n g e space t h e space e v e n space d i g i t s space i n space 5 space o d d space p l a c e s space equals fraction numerator 5 cross times 4 cross times 3 cross times 2 cross times 1 over denominator 2 cross times 1 cross times 3 cross times 2 cross times 1 end fraction
    On further simplification, we get
    N u m b e r space o f space w a y s space t o space a r r a n g e space t h e space e v e n space d i g i t s space i n space 5 space o d d space p l a c e s space equals 10
    T o t a l space n u m b e r space o f space 9 space d i g i t s space n u m b e r space equals space 6 cross times 10 space equals space 60
    H e n c e comma space t h e space r e q u i r e d space n u m b e r space o f space 9 space d i g i t space n u m b e r s space equals space 60

    Here we have obtained the total number of 9 digit numbers using the given digits. While finding the number of ways to arrange the odd digits in 5 even places, we have divided the 4! by 2! because the digit 3 were occurring two times and the digit 5 were occurring 2 times. Here we can make a mistake by conserving the number of even digits 4 and the number of odd digits 5, which will result in the wrong answer.

    Related Questions to study

    General
    Maths-

    A person predicts the outcome of 20 cricket matches of his home team. Each match can result either in a win, loss or tie for the home team. Total number of ways in which he can make the predictions so that exactly 10 predictions are correct, is equal to :

    A person predicts the outcome of 20 cricket matches of his home team. Each match can result either in a win, loss or tie for the home team. Total number of ways in which he can make the predictions so that exactly 10 predictions are correct, is equal to :

    Maths-General
    General
    Maths-

    The foot of the perpendicular from the point left parenthesis 3 , 3 pi divided by 4 right parenthesis on the line r left parenthesis c o s space theta minus s i n space theta right parenthesis equals 6 square root of 2 is

    The foot of the perpendicular from the point left parenthesis 3 , 3 pi divided by 4 right parenthesis on the line r left parenthesis c o s space theta minus s i n space theta right parenthesis equals 6 square root of 2 is

    Maths-General
    General
    Maths-

    The point of intersection of the lines 2 c o s space theta plus s i n space theta equals 1 over r comma c o s space theta plus s i n space theta equals 1 over r is

    The point of intersection of the lines 2 c o s space theta plus s i n space theta equals 1 over r comma c o s space theta plus s i n space theta equals 1 over r is

    Maths-General
    parallel
    General
    Maths-

    The line passing through open parentheses negative 1 comma fraction numerator pi over denominator 2 end fraction close parentheses and perpendicular to square root of 3 s i n space theta plus 2 c o s space theta equals 4 over r is

    The line passing through open parentheses negative 1 comma fraction numerator pi over denominator 2 end fraction close parentheses and perpendicular to square root of 3 s i n space theta plus 2 c o s space theta equals 4 over r is

    Maths-General
    General
    Maths-

    The equation of the line passing through left parenthesis negative 1 comma pi divided by 6 right parenthesis comma left parenthesis 1 comma pi divided by 2 right parenthesis is

    The equation of the line passing through left parenthesis negative 1 comma pi divided by 6 right parenthesis comma left parenthesis 1 comma pi divided by 2 right parenthesis is

    Maths-General
    General
    Maths-

    The length of the perpendicular from (-1, π/6) to the line r left parenthesis 3 s i n space theta plus square root of 3 c o s space theta right parenthesis equals 3 is

    The length of the perpendicular from (-1, π/6) to the line r left parenthesis 3 s i n space theta plus square root of 3 c o s space theta right parenthesis equals 3 is

    Maths-General
    parallel
    General
    Maths-

    The sum of all the numbers that can be formed with the digits 2, 3, 4, 5 taken all at a time is (repetition is not allowed) :

    Alternatively, we can use the formula for the sum of numbers as
    (n - 1)! cross times (sum of digits) cross times (11111 ............ntimes). We can also solve this problem by writing all the possible numbers and finding the sum of them which will be time taking and make us confused. We should know that the value of the digits is determined by the place where they were present. We should check whether there is zero in the given digits and whether there are any repetitions present in the numbers. Similarly, we can expect problems to find the sum of numbers formed by these digits with repetition allowed.

    The sum of all the numbers that can be formed with the digits 2, 3, 4, 5 taken all at a time is (repetition is not allowed) :

    Maths-General

    Alternatively, we can use the formula for the sum of numbers as
    (n - 1)! cross times (sum of digits) cross times (11111 ............ntimes). We can also solve this problem by writing all the possible numbers and finding the sum of them which will be time taking and make us confused. We should know that the value of the digits is determined by the place where they were present. We should check whether there is zero in the given digits and whether there are any repetitions present in the numbers. Similarly, we can expect problems to find the sum of numbers formed by these digits with repetition allowed.

    General
    Maths-

    Total number of divisors of 480, that are of the form 4n + 2, n greater or equal than 0, is equal to :

    We can also solve this question by writing 4n + 2 = 2(2n + 1) where 2n + 1 is always an odd number. So, when all odd divisors will be multiplied by 2, we will get the divisors that we require. Hence, we can say a number of divisors of 4n + 2 form is the same as the number of odd divisors for 480.

    Total number of divisors of 480, that are of the form 4n + 2, n greater or equal than 0, is equal to :

    Maths-General

    We can also solve this question by writing 4n + 2 = 2(2n + 1) where 2n + 1 is always an odd number. So, when all odd divisors will be multiplied by 2, we will get the divisors that we require. Hence, we can say a number of divisors of 4n + 2 form is the same as the number of odd divisors for 480.

    General
    Maths-

    If 9P5 + 5 9P4 = 10Pr , then r =

    If 9P5 + 5 9P4 = 10Pr , then r =

    Maths-General
    parallel
    General
    Maths-

    The number of proper divisors of 2 to the power of p. 6 to the power of q. 15r is-

    The number of proper divisors of 2 to the power of p. 6 to the power of q. 15r is-

    Maths-General
    General
    Maths-

    Ifx squared minus 11 x plus a text  and  end text x squared minus 14 x plus 2 a have a common factor then 'a' is equal to

    Ifx squared minus 11 x plus a text  and  end text x squared minus 14 x plus 2 a have a common factor then 'a' is equal to

    Maths-General
    General
    physics-

    A block C of mass is moving with velocity and collides elastically with block of mass  and connected to another block of mass  through spring constant .What is  if  is compression of spring when velocity of  is same ?

    A block C of mass is moving with velocity and collides elastically with block of mass  and connected to another block of mass  through spring constant .What is  if  is compression of spring when velocity of  is same ?

    physics-General
    parallel
    General
    Maths-

    If fraction numerator 1 over denominator left parenthesis 1 plus 2 x right parenthesis open parentheses 1 minus x squared close parentheses end fraction equals fraction numerator A over denominator 1 plus 2 x end fraction plus fraction numerator B over denominator 1 plus x end fraction plus fraction numerator C over denominator 1 minus x end fraction then ascending order of A, B, C.

    If fraction numerator 1 over denominator left parenthesis 1 plus 2 x right parenthesis open parentheses 1 minus x squared close parentheses end fraction equals fraction numerator A over denominator 1 plus 2 x end fraction plus fraction numerator B over denominator 1 plus x end fraction plus fraction numerator C over denominator 1 minus x end fraction then ascending order of A, B, C.

    Maths-General
    General
    Maths-

    The number of different seven digit numbers that can be written using only the three digits 1, 2 and 3 with the condition that the digit 2 occurs twice in each number is-

    We know that there is not much difference between permutation and combination. Permutation is the way or method of arranging numbers from a given set of numbers such that the order of arrangement matters. Whereas combination is the way of selecting items from a given set of items where order of selection doesn’t matter. Both the word combination and permutation is the way of arrangement. Here, we will not use permutation because the order of toys is not necessary.

    The number of different seven digit numbers that can be written using only the three digits 1, 2 and 3 with the condition that the digit 2 occurs twice in each number is-

    Maths-General

    We know that there is not much difference between permutation and combination. Permutation is the way or method of arranging numbers from a given set of numbers such that the order of arrangement matters. Whereas combination is the way of selecting items from a given set of items where order of selection doesn’t matter. Both the word combination and permutation is the way of arrangement. Here, we will not use permutation because the order of toys is not necessary.

    General
    Maths-

    The centre and radius of the circle r equals c o s space theta minus s i n space theta are respectively

    The centre and radius of the circle r equals c o s space theta minus s i n space theta are respectively

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.