Question
How many terms will there be in the expansion of the expression . Explain how you know
Hint:
The expansion of the expression would have n+1 terms. The binomial expansion is
.
We are asked to explain and find the numbers of terms in the expansion of .
The correct answer is: n+1 term
Step 1 of 1:
The given expression is . The value of n=3. Consider the binomial theorem
.Here, the combination permutations are:
Which form the coefficients of the expansion. The numbers of combination permutations are n+1. Hence, the expansion would have n+1 terms.
For the expansion of the expression (x + y)n , we would have n+1 terms.
Related Questions to study
Factor in the form . Then find the value of a, b and c.
We use polynomial identities to factorize and expand polynomials to reduce time and space.
Factor in the form . Then find the value of a, b and c.
We use polynomial identities to factorize and expand polynomials to reduce time and space.
The sum of the coefficients in the expansion of the expression (a + b)n is 64. Use Pascal’s triangle to find the value of n.
To find the value of n when the sum of coefficients is given, we have to write them as the power of two. The power would be the value of n.
The sum of the coefficients in the expansion of the expression (a + b)n is 64. Use Pascal’s triangle to find the value of n.
To find the value of n when the sum of coefficients is given, we have to write them as the power of two. The power would be the value of n.
A student says that the expansion of the expression has seven terms. Describe and correct the error the student may have made ?
The answer can be found the Pascal’s triangle as well. The expansion of an expression has n+ 1 term.
A student says that the expansion of the expression has seven terms. Describe and correct the error the student may have made ?
The answer can be found the Pascal’s triangle as well. The expansion of an expression has n+ 1 term.
Expand the expression (2x - 1)4 .what is the sum of the coefficients?
The answer can be also found using the Pascal’s triangle. For an expression (x + y)n , we would consider the (n+1)th row.
Expand the expression (2x - 1)4 .what is the sum of the coefficients?
The answer can be also found using the Pascal’s triangle. For an expression (x + y)n , we would consider the (n+1)th row.
Use Pascal’s triangle and the binomial theorem to expand (x + 1)4 . Justify your work.
We can use both the binomial theorem and the Pascal’s triangle to get the expansion of any expression.
Use Pascal’s triangle and the binomial theorem to expand (x + 1)4 . Justify your work.
We can use both the binomial theorem and the Pascal’s triangle to get the expansion of any expression.
Emma factored Describe and correct the error Emma made in factoring the polynomial.
It is important to recall the law of exponents while to expand polynomial expressions.
Emma factored Describe and correct the error Emma made in factoring the polynomial.
It is important to recall the law of exponents while to expand polynomial expressions.
Expand using binomial theorem.
The answer can be found using the Pascal’s triangle. For , we would consider the (n+1)th row as the coefficients.
Expand using binomial theorem.
The answer can be found using the Pascal’s triangle. For , we would consider the (n+1)th row as the coefficients.
Expand using Pascal’s triangle.
The answer can be found using the binomial theorem
Expand using Pascal’s triangle.
The answer can be found using the binomial theorem
Use binomial theorem to expand expression (x + y)7 .
The answer can be found using the Pascal’s triangle. For an expression (x + y)n , we would have n + 1 term.
Use binomial theorem to expand expression (x + y)7 .
The answer can be found using the Pascal’s triangle. For an expression (x + y)n , we would have n + 1 term.
Use binomial theorem to expand expression (d - 1)4
The answer can be found using the Pascal’s triangle. For an expression , we would have n+ 1 term.
Use binomial theorem to expand expression (d - 1)4
The answer can be found using the Pascal’s triangle. For an expression , we would have n+ 1 term.
Use Pascal triangle to expand the expression (a - b)6 .
The answer can be found using the binomial expansion of
Use Pascal triangle to expand the expression (a - b)6 .
The answer can be found using the binomial expansion of
Use Pascal’s triangle to expand the expression (x + 1)5
The answer can be found using the binomial expansion of
Use Pascal’s triangle to expand the expression (x + 1)5
The answer can be found using the binomial expansion of
How many terms will there be in the expansion of the expression . Explain how you know?
How many terms will there be in the expansion of the expression . Explain how you know?
Find the third term of the binomial expansion
The expansion of (x + y)n has n+1 terms while expanding. The answer can be found using the Pascal’s triangle or binomial expansion.
Find the third term of the binomial expansion
The expansion of (x + y)n has n+1 terms while expanding. The answer can be found using the Pascal’s triangle or binomial expansion.