Maths-
General
Easy

Question

If fraction numerator 2 x plus 1 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent plus 2 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B x plus c over denominator x to the power of 2 end exponent plus 2 end fraction then B=

  1. 2    
  2. 1    
  3. -1    
  4. -2    

hintHint:

Taking LCM on RHS and simplifying , then take any value of x and find a,
Equate the coefficients and find the required value.

The correct answer is: -1


     Given :
    fraction numerator 2 x plus 1 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent plus 2 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B x plus c over denominator x to the power of 2 end exponent plus 2 end fraction

    Take LCM on RHS
    rightwards double arrow fraction numerator 2 x plus 1 over denominator left parenthesis x minus 1 right parenthesis open parentheses x squared plus 2 close parentheses end fraction equals fraction numerator A open parentheses x squared plus 2 close parentheses space plus left parenthesis B x space plus c right parenthesis space left parenthesis x minus 1 right parenthesis over denominator left parenthesis x minus 1 right parenthesis open parentheses x squared plus 2 close parentheses end fraction

C a n c e l l i n g space d e n o m i n a t o r s space o n space b o t h space s i d e
space
rightwards double arrow 2 x plus 1 space equals space A open parentheses x squared plus 2 close parentheses space plus left parenthesis B x space plus c right parenthesis space left parenthesis x minus 1 right parenthesis

W h e n space x space equals space 1
rightwards double arrow 2 plus 1 space equals space A open parentheses 1 plus 2 close parentheses space plus space 0
rightwards double arrow space A space equals space 1

E q u a t i n g space c o e f f i c i e n t s space o f space x squared space a n d space x space b y space c o m p a r i n g space L H S thin space a n d space R H S comma space w e space g e t
rightwards double arrow A space plus space B space equals space 0 space rightwards double arrow space B space equals space minus A
rightwards double arrow T h u s comma space B space equals space minus 1

    Related Questions to study

    General
    Maths-

    If the remainders of the polynomial f(x) when divided by x minus 1 comma x minus 2 are 2,5 then the remainder of f left parenthesis x right parenthesis when divided by left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis is

    If the remainders of the polynomial f(x) when divided by x minus 1 comma x minus 2 are 2,5 then the remainder of f left parenthesis x right parenthesis when divided by left parenthesis x minus 1 right parenthesis left parenthesis x minus 2 right parenthesis is

    Maths-General
    General
    Maths-

    Assertion : f left parenthesis x right parenthesis equals s g n invisible function application left parenthesis x minus vertical line x vertical line right parenthesis can never become positive.
    Reason : f(x) = sgn x is always a positive function.

    Assertion : f left parenthesis x right parenthesis equals s g n invisible function application left parenthesis x minus vertical line x vertical line right parenthesis can never become positive.
    Reason : f(x) = sgn x is always a positive function.

    Maths-General
    General
    Maths-

    fraction numerator d x over denominator square root of 1 minus x to the power of 2 end exponent end root minus 1 end fraction=

    fraction numerator d x over denominator square root of 1 minus x to the power of 2 end exponent end root minus 1 end fraction=

    Maths-General
    parallel
    General
    maths-

    Evaluate not stretchy integral fraction numerator 1 over denominator left parenthesis x to the power of 2 end exponent minus 4 right parenthesis square root of x plus 1 end root end fractiondx

    Evaluate not stretchy integral fraction numerator 1 over denominator left parenthesis x to the power of 2 end exponent minus 4 right parenthesis square root of x plus 1 end root end fractiondx

    maths-General
    General
    maths-

    If f left parenthesis x right parenthesis equals t a n to the power of negative 1 end exponent invisible function application x plus l space l n invisible function application square root of 1 plus x end root minus l n square root of 1 minus x end root. The integral of 1 divided by 2 space f apostrophe left parenthesis x right parenthesis with respect to x to the power of 4 end exponent is -

    If f left parenthesis x right parenthesis equals t a n to the power of negative 1 end exponent invisible function application x plus l space l n invisible function application square root of 1 plus x end root minus l n square root of 1 minus x end root. The integral of 1 divided by 2 space f apostrophe left parenthesis x right parenthesis with respect to x to the power of 4 end exponent is -

    maths-General
    General
    maths-

    not stretchy integral fraction numerator e to the power of x end exponent d x over denominator cos invisible function application h x plus sin invisible function application h x end fractionis

    not stretchy integral fraction numerator e to the power of x end exponent d x over denominator cos invisible function application h x plus sin invisible function application h x end fractionis

    maths-General
    parallel
    General
    maths-

    integral open parentheses x minus blank to the power of 10 end exponent C subscript 1 end subscript x to the power of 2 end exponent plus blank to the power of 10 end exponent C subscript 2 end subscript x to the power of 3 end exponent minus blank to the power of 10 end exponent C subscript 3 end subscript x to the power of 4 end exponent horizontal ellipsis horizontal ellipsis plus blank to the power of 10 end exponent C subscript 10 end subscript x to the power of 11 end exponent close parentheses d xdx equals:

    integral open parentheses x minus blank to the power of 10 end exponent C subscript 1 end subscript x to the power of 2 end exponent plus blank to the power of 10 end exponent C subscript 2 end subscript x to the power of 3 end exponent minus blank to the power of 10 end exponent C subscript 3 end subscript x to the power of 4 end exponent horizontal ellipsis horizontal ellipsis plus blank to the power of 10 end exponent C subscript 10 end subscript x to the power of 11 end exponent close parentheses d xdx equals:

    maths-General
    General
    maths-

    If I = not stretchy integral fraction numerator d x over denominator x square root of 1 minus x to the power of 3 end exponent end root end fraction, then I equals:

    If I = not stretchy integral fraction numerator d x over denominator x square root of 1 minus x to the power of 3 end exponent end root end fraction, then I equals:

    maths-General
    General
    maths-

    The indefinite integral of left parenthesis 12 s i n invisible function application x plus 5 c o s invisible function application x right parenthesis to the power of negative 1 end exponent is, for any arbitrary constant -

    The indefinite integral of left parenthesis 12 s i n invisible function application x plus 5 c o s invisible function application x right parenthesis to the power of negative 1 end exponent is, for any arbitrary constant -

    maths-General
    parallel
    General
    maths-

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    If f open parentheses fraction numerator 3 x minus 4 over denominator 3 x plus 4 end fraction close parentheses = x + 2 then not stretchy integral f left parenthesis x right parenthesis d x is equal to

    maths-General
    General
    maths-

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    Let x to the power of 2 end exponent not equal to n pi minus 1 comma n element of N, then integral x square root of fraction numerator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses minus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses over denominator 2 s i n invisible function application open parentheses x to the power of 2 end exponent plus 1 close parentheses plus s i n invisible function application 2 open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction end root d x is equal to:

    maths-General
    General
    maths-

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    Statement I : y = f(x) =fraction numerator x to the power of 2 end exponent minus 2 x plus 4 over denominator x to the power of 2 end exponent minus 2 x plus 5 end fraction, xelement ofR Range of f(x) is [3/4, 1)
    Statement II : left parenthesis x minus 1 right parenthesis to the power of 2 end exponent equals fraction numerator 4 y minus 3 over denominator 1 minus y end fraction.

    maths-General
    parallel
    General
    maths-

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    Statement I : Function f(x) = sinx + {x} is periodic with period 2 pi
    Statement II : sin x and {x} are both periodic with period 2 pi and 1 respectively.

    maths-General
    General
    maths-

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    Statement 1 : f : R rightwards arrow R and f left parenthesis x right parenthesis equals e to the power of x end exponent plus e to the power of negative x end exponentis bijective.
    Statement 2 : f colon R rightwards arrow R comma space f left parenthesis x right parenthesis equals e to the power of x minus e to the power of negative x end exponentis bijective.

    maths-General
    General
    maths-

    Statement I : Graph of y = tan x is symmetrical about origin
    Statement II : Graph of y equals sec squared invisible function application x is symmetrical about y-axis

    Statement I : Graph of y = tan x is symmetrical about origin
    Statement II : Graph of y equals sec squared invisible function application x is symmetrical about y-axis

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.