Question
If
is a complex number such that
then the minimum value of
is is strictly
- greater than
is strictly
- greater than
but
- less than
is equal to
- lies in the interval
The correct answer is: lies in the interval ![left parenthesis 12 right parenthesis]()
We are given that z is a complex number then we are asked to find the minimum value of |z+1/2|
![vertical line space z space vertical line space greater or equal than space 2 space space i s space t h e space r e g i o n space o n space o r space o u t s i d e space o f space c i r c l e space w h o s e space C e n t r e space i s space left parenthesis 0 comma 0 right parenthesis space a n d space a space r a d i u s space i s space 2.
space M i n i m u m space space ∣ space ∣ space z space plus space 1 half ∣ space ∣ space space i s space d i s tan c e space o f space z comma space w h i c h space l i e space o n space c i r c l e space vertical line space z space 1 space vertical line space equals space 2 space space f r o m space space left parenthesis space minus space 1 space 2 space comma space 0 space right parenthesis space.
space therefore space space M i n i m u m space space ∣ space ∣ space z space plus 1 half space space ∣ space ∣ space space equals space D i s tan c e space o f space space left parenthesis space minus space 1 space 2 space comma space 0 space right parenthesis space space f r o m space left parenthesis negative 2 comma 0 right parenthesis space equals space √ space left parenthesis space minus space 2 space plus space 1 half space right parenthesis squared space plus space 0 space equals space fraction numerator 3 over denominator 2 end fraction space H e n c e comma space m i n i m u m space v a l u e space o f space space ∣ space ∣ space z space plus space 1 half space ∣ space ∣ space space l i e s space i n space t h e space i n t e r v a l space left parenthesis 1 comma 2 right parenthesis.]()
Therefore the correct option is choice 4
Related Questions to study
If
and
then
Therefore the correct option is choice 3
If
and
then
Therefore the correct option is choice 3
One of the values of ![open parentheses cis invisible function application fraction numerator pi over denominator 6 end fraction close parentheses to the power of fraction numerator 1 over denominator 2 end fraction end exponent plus open parentheses cis invisible function application fraction numerator negative pi over denominator 6 end fraction close parentheses to the power of fraction numerator 11 over denominator 2 end fraction end exponent]()
One of the values of ![open parentheses cis invisible function application fraction numerator pi over denominator 6 end fraction close parentheses to the power of fraction numerator 1 over denominator 2 end fraction end exponent plus open parentheses cis invisible function application fraction numerator negative pi over denominator 6 end fraction close parentheses to the power of fraction numerator 11 over denominator 2 end fraction end exponent]()
If the distance between the points
,
is ![2 a]()
then
6
Assertion (A): If
, then
lies between
![2 n pi plus fraction numerator pi over denominator 4 end fraction text and end text 2 n pi plus fraction numerator 3 pi over denominator 4 end fraction left parenthesis n element of z right parenthesis]()
Reason
If
, then ![s i n invisible function application fraction numerator theta over denominator 2 end fraction greater than 0]()
If the distance between the points
,
is ![2 a]()
then
6
Assertion (A): If
, then
lies between
![2 n pi plus fraction numerator pi over denominator 4 end fraction text and end text 2 n pi plus fraction numerator 3 pi over denominator 4 end fraction left parenthesis n element of z right parenthesis]()
Reason
If
, then ![s i n invisible function application fraction numerator theta over denominator 2 end fraction greater than 0]()
If
then a+b+c=
So here we have used the trigonometric functions and trigonometric formulas to solve this, the algebraic expressions were used to formulate it. Here the answer of a+b+c is 7.
If
then a+b+c=
So here we have used the trigonometric functions and trigonometric formulas to solve this, the algebraic expressions were used to formulate it. Here the answer of a+b+c is 7.
If a,b,c are the sides of the triangle ABC such that ![open parentheses 1 plus fraction numerator b minus c over denominator a end fraction close parentheses to the power of a end exponent open parentheses 1 plus fraction numerator c minus a over denominator b end fraction close parentheses to the power of b end exponent open parentheses 1 plus fraction numerator a minus b over denominator c end fraction close parentheses to the power of c end exponent greater or equal than 1]()
Then the triangle
must be
If a,b,c are the sides of the triangle ABC such that ![open parentheses 1 plus fraction numerator b minus c over denominator a end fraction close parentheses to the power of a end exponent open parentheses 1 plus fraction numerator c minus a over denominator b end fraction close parentheses to the power of b end exponent open parentheses 1 plus fraction numerator a minus b over denominator c end fraction close parentheses to the power of c end exponent greater or equal than 1]()
Then the triangle
must be
If
and
then the value of
' is
Therefore the correct option is choice 3
If
and
then the value of
' is
Therefore the correct option is choice 3
The maximum value of
under the restriction
is
The maximum value of
under the restriction
is
The mean of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2, and 6. Then the other two are
The mean of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2, and 6. Then the other two are
are three non zero real numbers such that ![open parentheses x subscript 1 end subscript superscript 2 end superscript plus x subscript 2 end subscript superscript 2 end superscript close parentheses open parentheses x subscript 2 end subscript superscript 2 end superscript plus x subscript 3 end subscript superscript 2 end superscript close parentheses less or equal than open parentheses x subscript 1 end subscript x subscript 2 end subscript plus x subscript 2 end subscript x subscript 3 end subscript close parentheses to the power of 2 end exponent blank text then the G.M. of end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript text is end text]()
are three non zero real numbers such that ![open parentheses x subscript 1 end subscript superscript 2 end superscript plus x subscript 2 end subscript superscript 2 end superscript close parentheses open parentheses x subscript 2 end subscript superscript 2 end superscript plus x subscript 3 end subscript superscript 2 end superscript close parentheses less or equal than open parentheses x subscript 1 end subscript x subscript 2 end subscript plus x subscript 2 end subscript x subscript 3 end subscript close parentheses to the power of 2 end exponent blank text then the G.M. of end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript text is end text]()
When 10 is subtracted from all the observations, the mean is reduced to 60% of its value. If 5 is added to all the observations, then the mean will be
Hence, the new mean is 30.
When 10 is subtracted from all the observations, the mean is reduced to 60% of its value. If 5 is added to all the observations, then the mean will be
Hence, the new mean is 30.
If mean deviation through median is 15 and median is 450, then coefficient of mean deviation is
Hence, the coefficient of Mean Deviation is 1/30.
If mean deviation through median is 15 and median is 450, then coefficient of mean deviation is
Hence, the coefficient of Mean Deviation is 1/30.