Maths-
General
Easy

Question

If the left parenthesis r plus 1 right parenthesisth term in the expansion of open parentheses fraction numerator a to the power of 1 divided by 3 end exponent over denominator b to the power of 1 divided by 6 end exponent end fraction plus fraction numerator b to the power of 1 divided by 2 end exponent over denominator a to the power of 1 divided by 6 end exponent end fraction close parentheses to the power of 21 end exponenthas equal exponents of both a and b, then value of r is

  1. 8    
  2. 9    
  3. 10    
  4. 11    

The correct answer is: 9


    We have, T subscript r plus 1 end subscript equals blank to the power of 21 end exponent C subscript r end subscript open parentheses fraction numerator a to the power of 1 divided by 3 end exponent over denominator b to the power of 1 divided by 6 end exponent end fraction close parentheses to the power of 21 minus r end exponent open parentheses fraction numerator b to the power of 1 divided by 2 end exponent over denominator a to the power of 1 divided by 6 end exponent end fraction close parentheses to the power of r end exponent
    equals blank to the power of 21 end exponent C subscript r end subscript fraction numerator a to the power of 7 minus left parenthesis r divided by 3 right parenthesis end exponent over denominator b to the power of 7 divided by 2 minus r divided by 6 end exponent end fraction. fraction numerator b to the power of r divided by 2 end exponent over denominator a to the power of r divided by 6 end exponent end fraction
    equals blank to the power of 21 end exponent C subscript r end subscript a to the power of 7 minus left parenthesis r divided by 2 right parenthesis end exponent b to the power of 2 r divided by 3 minus 7 divided by 2 end exponent
    Since, exponents of a and b in the left parenthesis r plus 1 right parenthesisth term are equal
    therefore blank 7 minus fraction numerator r over denominator 2 end fraction equals fraction numerator 2 r over denominator 3 end fraction minus fraction numerator 7 over denominator 2 end fraction
    rightwards double arrow blank fraction numerator 21 over denominator 2 end fraction equals fraction numerator 7 over denominator 6 end fraction r blank rightwards double arrow r equals 9

    Related Questions to study

    General
    Maths-

    If in the expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent, the coefficient of rth and left parenthesis r plus 2 right parenthesisth term be equal, then r is equal to

    If in the expansion of left parenthesis 1 plus x right parenthesis to the power of n end exponent, the coefficient of rth and left parenthesis r plus 2 right parenthesisth term be equal, then r is equal to

    Maths-General
    General
    Maths-

    The sum of the series not stretchy sum from r equals 0 to n of left parenthesis negative 1 right parenthesis to the power of r end exponent blank to the power of n end exponent C subscript r end subscript open parentheses fraction numerator 1 over denominator 2 to the power of r end exponent end fraction plus fraction numerator 3 to the power of r end exponent over denominator 2 to the power of 2 r end exponent end fraction plus fraction numerator 7 to the power of r end exponent over denominator 2 to the power of 3 r end exponent end fraction plus fraction numerator 15 to the power of r end exponent over denominator 2 to the power of 4 r end exponent end fraction plus... plus m blank t e r m s close parentheses is

    The sum of the series not stretchy sum from r equals 0 to n of left parenthesis negative 1 right parenthesis to the power of r end exponent blank to the power of n end exponent C subscript r end subscript open parentheses fraction numerator 1 over denominator 2 to the power of r end exponent end fraction plus fraction numerator 3 to the power of r end exponent over denominator 2 to the power of 2 r end exponent end fraction plus fraction numerator 7 to the power of r end exponent over denominator 2 to the power of 3 r end exponent end fraction plus fraction numerator 15 to the power of r end exponent over denominator 2 to the power of 4 r end exponent end fraction plus... plus m blank t e r m s close parentheses is

    Maths-General
    General
    Maths-

    The coefficient of t to the power of 24 end exponent in the expansion of open parentheses 1 plus t to the power of 2 end exponent close parentheses to the power of 12 end exponent open parentheses 1 plus t to the power of 12 end exponent close parentheses left parenthesis 1 plus t to the power of 24 end exponent right parenthesis is

    The coefficient of t to the power of 24 end exponent in the expansion of open parentheses 1 plus t to the power of 2 end exponent close parentheses to the power of 12 end exponent open parentheses 1 plus t to the power of 12 end exponent close parentheses left parenthesis 1 plus t to the power of 24 end exponent right parenthesis is

    Maths-General
    parallel
    General
    Maths-

    The coefficient of x to the power of 5 end exponent in the expansion of open parentheses 1 plus x to the power of 2 end exponent close parentheses to the power of 5 end exponent open parentheses 1 plus x close parentheses to the power of 4 end exponent is

    The coefficient of x to the power of 5 end exponent in the expansion of open parentheses 1 plus x to the power of 2 end exponent close parentheses to the power of 5 end exponent open parentheses 1 plus x close parentheses to the power of 4 end exponent is

    Maths-General
    General
    Maths-

    Let R equals left parenthesis 2 plus square root of 3 right parenthesis to the power of 2 n end exponent and f equals R minus left square bracket R right square bracket where left square bracket bullet right square bracket denotes the greatest integer function, then R open parentheses 1 minus f close parentheses is equal to

    Let R equals left parenthesis 2 plus square root of 3 right parenthesis to the power of 2 n end exponent and f equals R minus left square bracket R right square bracket where left square bracket bullet right square bracket denotes the greatest integer function, then R open parentheses 1 minus f close parentheses is equal to

    Maths-General
    General
    Maths-

    If left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis to the power of n end exponent equals not stretchy sum from r equals 0 to 2 n of a subscript r end subscript x to the power of r end exponent comma blank t h e n blank a subscript 1 end subscript minus 2 a subscript 2 end subscript plus 3 a subscript 3 end subscript horizontal ellipsis minus 2 n a subscript 2 n end subscript is equal to

    If left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis to the power of n end exponent equals not stretchy sum from r equals 0 to 2 n of a subscript r end subscript x to the power of r end exponent comma blank t h e n blank a subscript 1 end subscript minus 2 a subscript 2 end subscript plus 3 a subscript 3 end subscript horizontal ellipsis minus 2 n a subscript 2 n end subscript is equal to

    Maths-General
    parallel
    General
    Maths-

    Let open square brackets x close square brackets denote the greatest integer less than or equal to x. If x equals open parentheses square root of 3 plus 1 close parentheses to the power of 5 end exponent, then open square brackets x close square brackets is equal to

    Let open square brackets x close square brackets denote the greatest integer less than or equal to x. If x equals open parentheses square root of 3 plus 1 close parentheses to the power of 5 end exponent, then open square brackets x close square brackets is equal to

    Maths-General
    General
    Maths-

    left parenthesis 2 to the power of 3 n end exponent minus 1 right parenthesis will be divisible by left parenthesis for all n element of N right parenthesis

    left parenthesis 2 to the power of 3 n end exponent minus 1 right parenthesis will be divisible by left parenthesis for all n element of N right parenthesis

    Maths-General
    General
    Maths-

    The coefficient of x to the power of 3 end exponent y to the power of 4 end exponent z to the power of 5 end exponent in the expansion of left parenthesis x y plus y z plus x z right parenthesis to the power of 6 end exponent is

    The coefficient of x to the power of 3 end exponent y to the power of 4 end exponent z to the power of 5 end exponent in the expansion of left parenthesis x y plus y z plus x z right parenthesis to the power of 6 end exponent is

    Maths-General
    parallel
    General
    Maths-

    Let C subscript 1 end subscript comma blank C subscript 2 end subscript comma blank C subscript 3 end subscript are the usual binomial coefficients. Let S equals C subscript 1 end subscript plus 2 C subscript 2 end subscript plus 3 C subscript 3 end subscript plus... plus n C subscript n end subscript, then S equals

    Let C subscript 1 end subscript comma blank C subscript 2 end subscript comma blank C subscript 3 end subscript are the usual binomial coefficients. Let S equals C subscript 1 end subscript plus 2 C subscript 2 end subscript plus 3 C subscript 3 end subscript plus... plus n C subscript n end subscript, then S equals

    Maths-General
    General
    Maths-

    The coefficient of x in the expansion of open parentheses 1 plus x close parentheses open parentheses 1 plus 2 x close parentheses open parentheses 1 plus 3 x close parentheses horizontal ellipsis horizontal ellipsis left parenthesis 1 plus 100 x right parenthesis is

    The coefficient of x in the expansion of open parentheses 1 plus x close parentheses open parentheses 1 plus 2 x close parentheses open parentheses 1 plus 3 x close parentheses horizontal ellipsis horizontal ellipsis left parenthesis 1 plus 100 x right parenthesis is

    Maths-General
    General
    Maths-

    I f blank open vertical bar x close vertical bar less than fraction numerator 1 over denominator 2 end fraction comma blank t h e n blank t h e blank c o e f f i c i e n t blank o f blank x to the power of r end exponent blank i n blank t h e blank e x p a n s i o n blank o f fraction numerator 1 plus 2 x over denominator left parenthesis 1 minus 2 x right parenthesis to the power of 2 end exponent end fraction comma blank i s

    I f blank open vertical bar x close vertical bar less than fraction numerator 1 over denominator 2 end fraction comma blank t h e n blank t h e blank c o e f f i c i e n t blank o f blank x to the power of r end exponent blank i n blank t h e blank e x p a n s i o n blank o f fraction numerator 1 plus 2 x over denominator left parenthesis 1 minus 2 x right parenthesis to the power of 2 end exponent end fraction comma blank i s

    Maths-General
    parallel
    General
    Maths-

    In the expansion of left parenthesis 1 plus x plus x to the power of 2 end exponent plus x to the power of 3 end exponent right parenthesis to the power of 6 end exponent comma then coefficient of x to the power of 14 end exponent is

    In the expansion of left parenthesis 1 plus x plus x to the power of 2 end exponent plus x to the power of 3 end exponent right parenthesis to the power of 6 end exponent comma then coefficient of x to the power of 14 end exponent is

    Maths-General
    General
    Physics-

    A person can see clearly only upto 3m. What will be power of his spectacles lens, so that he can see clearly upto 12 m

    A person can see clearly only upto 3m. What will be power of his spectacles lens, so that he can see clearly upto 12 m

    Physics-General
    General
    Physics-

    The least distance of distinct vision for young adult with normal vision is about

    The least distance of distinct vision for young adult with normal vision is about

    Physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.