Maths-
General
Easy

Question

If the rank of the matrix open square brackets table row 4 2 cell 1 minus x end cell row 5 k 1 row 6 3 cell 1 plus x end cell end table close square brackets is 2 then

  1. k =fraction numerator 5 over denominator 2 end fraction , x =fraction numerator 1 over denominator 5 end fraction    
  2. k =fraction numerator 5 over denominator 2 end fraction , x ≠ fraction numerator 1 over denominator 5 end fraction    
  3. k = fraction numerator 1 over denominator 5 end fraction , x =fraction numerator 5 over denominator 2 end fraction    
  4. None of these    

hintHint:

The rank of a matrix is the maximum number of its linearly independent rows. If two rows or columns of the are in GP then the det (Determinant) of that matrix is 0.

The correct answer is: k =fraction numerator 5 over denominator 2 end fraction , x ≠ fraction numerator 1 over denominator 5 end fraction


    Given, the rank of the matrix open square brackets table row 4 2 cell 1 minus x end cell row 5 k 1 row 6 3 cell 1 plus x end cell end table close square brackets is 2
    To get rank 2 out of 3 x 3 matrix the Det of 3x3 matrix must be 0.
    then if k = 5 over 2 then matrix det(Determinant)  will be 0 independent of x  as first 2 columns will be in Geometric progression and then at least one 2 x 2 should not be 0 to get the rank 2.
    open vertical bar table row 2 cell 1 minus x end cell row cell 5 over 2 end cell 1 end table close vertical bar space not equal to space 0 space space rightwards double arrow 2 space minus 5 over 2 left parenthesis 1 minus x right parenthesis space not equal to space 0 space space
rightwards double arrow fraction numerator negative 1 over denominator 2 end fraction plus fraction numerator 5 x over denominator 2 end fraction not equal to space 0 space rightwards double arrow space 5 x not equal to 1
rightwards double arrow x not equal to 1 fifth
    So,  k = 5 over 2 and x space not equal to 1 fifth

    Related Questions to study

    General
    Maths-

    If A = open square brackets table row cell cos invisible function application theta end cell cell – sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets, then AT + A = I2, if –

    If A = open square brackets table row cell cos invisible function application theta end cell cell – sin invisible function application theta end cell row cell sin invisible function application theta end cell cell cos invisible function application theta end cell end table close square brackets, then AT + A = I2, if –

    Maths-General
    General
    maths-

    If A = open square brackets table row alpha 0 row 1 1 end table close square brackets and B = open square brackets table row 1 0 row 3 1 end table close square brackets, then value of alpha for which A2 = B is:

    If A = open square brackets table row alpha 0 row 1 1 end table close square brackets and B = open square brackets table row 1 0 row 3 1 end table close square brackets, then value of alpha for which A2 = B is:

    maths-General
    General
    chemistry-

    Which of the following has no action with starch solution?

    Which of the following has no action with starch solution?

    chemistry-General
    parallel
    General
    Maths-

    Let three matrices A = open square brackets table row 2 1 row 4 1 end table close square brackets; B = open square brackets table row 3 4 row 2 3 end table close square bracketsand C = open square brackets table row 3 cell – 4 end cell row cell – 2 end cell 3 end table close square brackets then tr(A) + tropen parentheses fraction numerator A B C over denominator 2 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 2 end exponent over denominator 4 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 3 end exponent over denominator 8 end fraction close parentheses+ ....... + straight infinity =

    Let three matrices A = open square brackets table row 2 1 row 4 1 end table close square brackets; B = open square brackets table row 3 4 row 2 3 end table close square bracketsand C = open square brackets table row 3 cell – 4 end cell row cell – 2 end cell 3 end table close square brackets then tr(A) + tropen parentheses fraction numerator A B C over denominator 2 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 2 end exponent over denominator 4 end fraction close parentheses + tropen parentheses fraction numerator A left parenthesis B C right parenthesis to the power of 3 end exponent over denominator 8 end fraction close parentheses+ ....... + straight infinity =

    Maths-General
    General
    Maths-

    A = open square brackets table row 1 cell tan invisible function application x end cell row cell – tan invisible function application x end cell 1 end table close square brackets then let us define a function f(x) = dt.(ATA–1) then which of the following can not be the value of fraction numerator f open parentheses f open parentheses f open parentheses f............ f left parenthesis x right parenthesis close parentheses close parentheses close parentheses over denominator n t i m e s end fraction is (n ≥ 2)

    A = open square brackets table row 1 cell tan invisible function application x end cell row cell – tan invisible function application x end cell 1 end table close square brackets then let us define a function f(x) = dt.(ATA–1) then which of the following can not be the value of fraction numerator f open parentheses f open parentheses f open parentheses f............ f left parenthesis x right parenthesis close parentheses close parentheses close parentheses over denominator n t i m e s end fraction is (n ≥ 2)

    Maths-General
    General
    Maths-

    Let A, B, C, D be (not necessarily square) real matrices such that AT = BCD; BT = CDA; CT = DAB and DT = ABC for the matrix S = ABCD, consider the two statements.
    I. S3 = S
    II. S2 = S4

    Let A, B, C, D be (not necessarily square) real matrices such that AT = BCD; BT = CDA; CT = DAB and DT = ABC for the matrix S = ABCD, consider the two statements.
    I. S3 = S
    II. S2 = S4

    Maths-General
    parallel
    General
    Maths-

    Let A =open square brackets table row 1 cell sin invisible function application theta end cell 1 row cell – sin invisible function application theta end cell 1 cell sin invisible function application theta end cell row cell – 1 end cell cell – sin invisible function application theta end cell 1 end table close square brackets, where 0 ≤ θ < 2pi, then

    Let A =open square brackets table row 1 cell sin invisible function application theta end cell 1 row cell – sin invisible function application theta end cell 1 cell sin invisible function application theta end cell row cell – 1 end cell cell – sin invisible function application theta end cell 1 end table close square brackets, where 0 ≤ θ < 2pi, then

    Maths-General
    General
    Maths-

    If A is matrix such that A2 + A + 2I = O, then which of the following is INCORRECT ?
    (Where I is unit matrix of orde r 2 and O is null matrix of order 2)

    inverse of a matrix exists when the determinant of the matrix is 0.
    any matrix multiplied by the identity matrix of the same order gives the same matrix.

    If A is matrix such that A2 + A + 2I = O, then which of the following is INCORRECT ?
    (Where I is unit matrix of orde r 2 and O is null matrix of order 2)

    Maths-General

    inverse of a matrix exists when the determinant of the matrix is 0.
    any matrix multiplied by the identity matrix of the same order gives the same matrix.

    General
    Maths-

    Identify the incorrect statement in respect of two square matrices A and B conformable for sum and product.

    trace of a matrix is the sum of the diagonal elements of a matrix.

    Identify the incorrect statement in respect of two square matrices A and B conformable for sum and product.

    Maths-General

    trace of a matrix is the sum of the diagonal elements of a matrix.

    parallel
    General
    chemistry-

    In the reaction 3 Br subscript 2 plus 6 CO subscript 3 superscript 2 minus end superscript plus 3 straight H subscript 2 straight O not stretchy rightwards arrow 5 Br to the power of ⊖ plus BrO subscript 3 superscript ⊖ plus 6 HCO subscript 3 superscript ⊖

    In the reaction 3 Br subscript 2 plus 6 CO subscript 3 superscript 2 minus end superscript plus 3 straight H subscript 2 straight O not stretchy rightwards arrow 5 Br to the power of ⊖ plus BrO subscript 3 superscript ⊖ plus 6 HCO subscript 3 superscript ⊖

    chemistry-General
    General
    Maths-

    A is an involutary matrix given by A = open square brackets table row 0 1 cell – 1 end cell row 4 cell – 3 end cell 4 row 3 cell – 3 end cell 4 end table close square brackets then inverse of fraction numerator A over denominator 2 end fraction will be

    an involutary matrix is one which follows the property A2= I, I = identity matrix of 3rd order.

    A is an involutary matrix given by A = open square brackets table row 0 1 cell – 1 end cell row 4 cell – 3 end cell 4 row 3 cell – 3 end cell 4 end table close square brackets then inverse of fraction numerator A over denominator 2 end fraction will be

    Maths-General

    an involutary matrix is one which follows the property A2= I, I = identity matrix of 3rd order.

    General
    maths-

    Consider the matrix A, B, C, D with order 2 × 3, 3×4, 4×4, 4×2 respectively. Let x = (alpha A B gamma C2 D)3 where alphagamma are scalars . Let |x| = k|ABC2D|3, then k is

    Consider the matrix A, B, C, D with order 2 × 3, 3×4, 4×4, 4×2 respectively. Let x = (alpha A B gamma C2 D)3 where alphagamma are scalars . Let |x| = k|ABC2D|3, then k is

    maths-General
    parallel
    General
    maths-

    If A3 = O , then I + A + A2 equals

    If A3 = O , then I + A + A2 equals

    maths-General
    General
    Maths-

    Let A open square brackets table row 1 2 row 3 4 end table close square brackets and B = open square brackets table row a b row c d end table close square brackets are two matrices such that AB = BA and c ≠ 0, then value of fraction numerator a minus d over denominator 3 b minus c end fraction is

    Let A open square brackets table row 1 2 row 3 4 end table close square brackets and B = open square brackets table row a b row c d end table close square brackets are two matrices such that AB = BA and c ≠ 0, then value of fraction numerator a minus d over denominator 3 b minus c end fraction is

    Maths-General
    General
    maths-

    If A and B are two matrices such that AB = B and BA = A, then

    If A and B are two matrices such that AB = B and BA = A, then

    maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.