Maths-
General
Easy

Question

In triangle A B C comma fraction numerator a over denominator b end fraction equals fraction numerator 2 over denominator 3 end fraction blankand sec to the power of 2 end exponent invisible function application A equals fraction numerator 8 over denominator 5 end fraction. Then the number of triangles satisfying these conditions is

  1. 0  
  2. 1  
  3. 2  
  4. 3  

The correct answer is: 2


    We haveblank fraction numerator a over denominator 2 end fraction equals fraction numerator b over denominator 3 end fraction equals k blankand sec to the power of 2 end exponent invisible function application A equals fraction numerator 8 over denominator 5 end fraction
    rightwards double arrow cos to the power of 2 end exponent invisible function application A equals fraction numerator 5 over denominator 8 end fraction
    rightwards double arrow fraction numerator 5 over denominator 8 end fraction equals open parentheses fraction numerator 9 k to the power of 2 end exponent plus c to the power of 2 end exponent minus 4 k to the power of 2 end exponent over denominator 6 k c end fraction close parentheses to the power of 2 end exponent equals open parentheses fraction numerator 5 k to the power of 2 end exponent plus c to the power of 2 end exponent over denominator 6 k c end fraction close parentheses to the power of 2 end exponent
    rightwards double arrow 45 k to the power of 2 end exponent c to the power of 2 end exponent equals 50 k to the power of 4 end exponent plus 20 k to the power of 2 end exponent c to the power of 2 end exponent plus 2 c to the power of 4 end exponent
    rightwards double arrow 2 c to the power of 4 end exponent minus 25 k to the power of 2 end exponent c to the power of 2 end exponent plus 50 k to the power of 4 end exponent equals 0
    rightwards double arrow c to the power of 2 end exponent equals fraction numerator 25 k to the power of 2 end exponent plus-or-minus square root of 625 k to the power of 4 end exponent minus 400 blank k to the power of 4 end exponent end root over denominator 4 end fraction
    rightwards double arrow fraction numerator 25 k to the power of 2 end exponent plus-or-minus 15 k to the power of 2 end exponent over denominator 4 end fraction equals 10 k to the power of 2 end exponent comma fraction numerator 5 over denominator 2 end fraction blank k to the power of 2 end exponent
    There are two possible valid values of c to the power of 2 end exponent. Hence, there exist two triangles satisfying the given conditions

    Related Questions to study

    General
    Maths-

    The greatest value of sin to the power of 4 end exponent invisible function application theta plus cos to the power of 4 end exponent invisible function application theta is

    The greatest value of sin to the power of 4 end exponent invisible function application theta plus cos to the power of 4 end exponent invisible function application theta is

    Maths-General
    General
    Maths-

    If in a increment A B C comma cos invisible function application 3 A plus cos invisible function application 3 B plus cos invisible function application 3 C equals 1 comma blankthen one angle must be exactly equal to

    If in a increment A B C comma cos invisible function application 3 A plus cos invisible function application 3 B plus cos invisible function application 3 C equals 1 comma blankthen one angle must be exactly equal to

    Maths-General
    General
    Maths-

    The solution of 4 sin to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x plus c o s e c to the power of 2 end exponent x plus cot to the power of 2 end exponent invisible function application x minus 6 equals 0 is

    The solution of 4 sin to the power of 2 end exponent invisible function application x plus tan to the power of 2 end exponent invisible function application x plus c o s e c to the power of 2 end exponent x plus cot to the power of 2 end exponent invisible function application x minus 6 equals 0 is

    Maths-General
    parallel
    General
    Maths-

    In triangle A B C comma blankifblank A minus B equals 120 degree blankandblank R equals 8 r where R blankandblank r have their usual meaning, then cos invisible function application C equals

    In triangle A B C comma blankifblank A minus B equals 120 degree blankandblank R equals 8 r where R blankandblank r have their usual meaning, then cos invisible function application C equals

    Maths-General
    General
    Maths-

    In the given figure, A B is the diameter of the circle, centered at ´ O to the power of ´ end exponent. If angle C O A equals 60 degree comma blank A B equals 2 r comma blank A C equals d blankandblank C D equals l comma then l is equal to

    In the given figure, A B is the diameter of the circle, centered at ´ O to the power of ´ end exponent. If angle C O A equals 60 degree comma blank A B equals 2 r comma blank A C equals d blankandblank C D equals l comma then l is equal to
    Maths-General

    General
    Maths-

    I f tan invisible function application x equals n tan invisible function application y comma blank n element of R to the power of plus end exponent comma then the maximum value of s e c to the power of 2 end exponent open parentheses x minus y close parentheses is equal to

    I f tan invisible function application x equals n tan invisible function application y comma blank n element of R to the power of plus end exponent comma then the maximum value of s e c to the power of 2 end exponent open parentheses x minus y close parentheses is equal to

    Maths-General
    parallel
    General
    Maths-

    If the equation 2 to the power of x end exponent plus 4 to the power of y end exponent equals 2 to the power of y end exponent plus 4 to the power of x end exponent is solved for y in terms of x comma blankwhere x less than 0 comma then the sum of the solutions is

    If the equation 2 to the power of x end exponent plus 4 to the power of y end exponent equals 2 to the power of y end exponent plus 4 to the power of x end exponent is solved for y in terms of x comma blankwhere x less than 0 comma then the sum of the solutions is

    Maths-General
    General
    Maths-

    I f blank A andblank B are acute positive angles satisfying the equations 3 sin to the power of 2 end exponent invisible function application A plus 2 sin to the power of 2 end exponent invisible function application B equals 1 andblank 3 sin invisible function application 2 A minus 2 sin invisible function application 2 B equals 0 comma then A plus 2 blank B is equal to

    I f blank A andblank B are acute positive angles satisfying the equations 3 sin to the power of 2 end exponent invisible function application A plus 2 sin to the power of 2 end exponent invisible function application B equals 1 andblank 3 sin invisible function application 2 A minus 2 sin invisible function application 2 B equals 0 comma then A plus 2 blank B is equal to

    Maths-General
    General
    Maths-

    The value of 49 to the power of open parentheses 1 minus log subscript 7 end subscript invisible function application 2 close parentheses end exponent plus 5 to the power of negative log subscript 5 end subscript invisible function application 4 end exponent is

    The value of 49 to the power of open parentheses 1 minus log subscript 7 end subscript invisible function application 2 close parentheses end exponent plus 5 to the power of negative log subscript 5 end subscript invisible function application 4 end exponent is

    Maths-General
    parallel
    General
    Maths-

    If square root of log subscript 2 end subscript invisible function application x end root minus 0.5 equals log subscript 2 end subscript invisible function application square root of x comma then x equals

    If square root of log subscript 2 end subscript invisible function application x end root minus 0.5 equals log subscript 2 end subscript invisible function application square root of x comma then x equals

    Maths-General
    General
    Maths-

    The maximum value of open parentheses cos invisible function application alpha subscript 1 end subscript close parentheses open parentheses cos invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cos invisible function application alpha subscript n end subscript close parentheses commaunser the restrictions 0 less or equal than alpha subscript 1 end subscript comma blank alpha subscript 2 end subscript comma horizontal ellipsis alpha subscript n end subscript less or equal than pi divided by 2 and open parentheses cot invisible function application alpha subscript 1 end subscript close parentheses open parentheses cot invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cot invisible function application alpha subscript n end subscript close parentheses equals 1is

    The maximum value of open parentheses cos invisible function application alpha subscript 1 end subscript close parentheses open parentheses cos invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cos invisible function application alpha subscript n end subscript close parentheses commaunser the restrictions 0 less or equal than alpha subscript 1 end subscript comma blank alpha subscript 2 end subscript comma horizontal ellipsis alpha subscript n end subscript less or equal than pi divided by 2 and open parentheses cot invisible function application alpha subscript 1 end subscript close parentheses open parentheses cot invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cot invisible function application alpha subscript n end subscript close parentheses equals 1is

    Maths-General
    General
    Maths-

    If both the distinct roots of the equation open vertical bar sin invisible function application x close vertical bar to the power of 2 end exponent plus open vertical bar sin invisible function application x close vertical bar plus b equals 0 blankinblank open square brackets 0 comma pi close square brackets are real, then the values of b are

    If both the distinct roots of the equation open vertical bar sin invisible function application x close vertical bar to the power of 2 end exponent plus open vertical bar sin invisible function application x close vertical bar plus b equals 0 blankinblank open square brackets 0 comma pi close square brackets are real, then the values of b are

    Maths-General
    parallel
    General
    Maths-

    In triangle A B C comma internal angle bisector angle A makes an angle theta with side B C. The value of sin invisible function application theta is equal to

    In triangle A B C comma internal angle bisector angle A makes an angle theta with side B C. The value of sin invisible function application theta is equal to

    Maths-General
    General
    Maths-

    If open parentheses 4 close parentheses to the power of log subscript 9 end subscript invisible function application 3 end exponent plus open parentheses 9 close parentheses to the power of log subscript 2 end subscript invisible function application 4 end exponent equals open parentheses 10 close parentheses to the power of log subscript x end subscript invisible function application 83 end exponent comma then x is equal to

    If open parentheses 4 close parentheses to the power of log subscript 9 end subscript invisible function application 3 end exponent plus open parentheses 9 close parentheses to the power of log subscript 2 end subscript invisible function application 4 end exponent equals open parentheses 10 close parentheses to the power of log subscript x end subscript invisible function application 83 end exponent comma then x is equal to

    Maths-General
    General
    Maths-

    The value of log invisible function application a b minus log invisible function application open vertical bar b close vertical bar equals

    The value of log invisible function application a b minus log invisible function application open vertical bar b close vertical bar equals

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.