Maths-
General
Easy

Question

The maximum value of open parentheses cos invisible function application alpha subscript 1 end subscript close parentheses open parentheses cos invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cos invisible function application alpha subscript n end subscript close parentheses commaunser the restrictions 0 less or equal than alpha subscript 1 end subscript comma blank alpha subscript 2 end subscript comma horizontal ellipsis alpha subscript n end subscript less or equal than pi divided by 2 and open parentheses cot invisible function application alpha subscript 1 end subscript close parentheses open parentheses cot invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cot invisible function application alpha subscript n end subscript close parentheses equals 1is

  1. 1 divided by 2 to the power of n divided by 2 end exponent  
  2. 1 divided by 2 to the power of n end exponent  
  3. 1/2n  
  4. 1  

The correct answer is: 1 divided by 2 to the power of n divided by 2 end exponent


    We have given that
    open parentheses cot invisible function application alpha subscript 1 end subscript close parentheses open parentheses cot invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cot invisible function application alpha subscript n end subscript close parentheses equals 1
    rightwards double arrow open parentheses cos invisible function application alpha subscript 1 end subscript close parentheses open parentheses cos invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cos invisible function application alpha subscript n end subscript close parentheses equals open parentheses sin invisible function application alpha subscript 1 end subscript close parentheses open parentheses sin invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis left parenthesis sin invisible function application alpha subscript n end subscript right parenthesis
    Let y equals open parentheses cos invisible function application alpha subscript 1 end subscript close parentheses open parentheses cos invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses cos invisible function application alpha subscript n end subscript close parentheses left parenthesis t o blank b e blank m a x i m u m right parenthesis
    Squaring both sides, we get
    y to the power of 2 end exponent equals open parentheses cos to the power of 2 end exponent invisible function application alpha subscript 1 end subscript close parentheses open parentheses cos to the power of 2 end exponent invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis left parenthesis c o s subscript n end subscript superscript 2 end superscript right parenthesis
    equals cos invisible function application alpha subscript 1 end subscript sin invisible function application alpha subscript 1 end subscript cos invisible function application alpha subscript 2 end subscript sin invisible function application alpha subscript 2 end subscript horizontal ellipsis cos invisible function application alpha subscript n end subscript sin invisible function application alpha subscript n end subscript [using Eq.(i)]
    equals fraction numerator 1 over denominator 2 to the power of n end exponent end fraction left square bracket sin invisible function application 2 alpha subscript 1 end subscript sin invisible function application 2 alpha subscript 2 end subscript horizontal ellipsis sin invisible function application 2 alpha subscript n end subscript right square bracket
    As 0 less or equal than 2 alpha subscript 1 end subscript comma blank 2 alpha subscript 2 end subscript comma horizontal ellipsis 2 alpha subscript 2 end subscript less or equal than pi
    rightwards double arrow 0 less or equal than sin invisible function application 2 alpha subscript 1 end subscript comma sin invisible function application 2 alpha subscript 2 end subscript comma horizontal ellipsis comma sin invisible function application 2 alpha subscript n end subscript less or equal than 1
    therefore y to the power of 2 end exponent less or equal than fraction numerator 1 over denominator 2 to the power of n end exponent end fraction 1 rightwards double arrow y less or equal than fraction numerator 1 over denominator 2 to the power of n divided by 2 end exponent end fraction
    Therefore, the maximum value of y is 1 divided by 2 to the power of n divided by 2 end exponent

    Related Questions to study

    General
    Maths-

    If both the distinct roots of the equation open vertical bar sin invisible function application x close vertical bar to the power of 2 end exponent plus open vertical bar sin invisible function application x close vertical bar plus b equals 0 blankinblank open square brackets 0 comma pi close square brackets are real, then the values of b are

    If both the distinct roots of the equation open vertical bar sin invisible function application x close vertical bar to the power of 2 end exponent plus open vertical bar sin invisible function application x close vertical bar plus b equals 0 blankinblank open square brackets 0 comma pi close square brackets are real, then the values of b are

    Maths-General
    General
    Maths-

    In triangle A B C comma internal angle bisector angle A makes an angle theta with side B C. The value of sin invisible function application theta is equal to

    In triangle A B C comma internal angle bisector angle A makes an angle theta with side B C. The value of sin invisible function application theta is equal to

    Maths-General
    General
    Maths-

    If open parentheses 4 close parentheses to the power of log subscript 9 end subscript invisible function application 3 end exponent plus open parentheses 9 close parentheses to the power of log subscript 2 end subscript invisible function application 4 end exponent equals open parentheses 10 close parentheses to the power of log subscript x end subscript invisible function application 83 end exponent comma then x is equal to

    If open parentheses 4 close parentheses to the power of log subscript 9 end subscript invisible function application 3 end exponent plus open parentheses 9 close parentheses to the power of log subscript 2 end subscript invisible function application 4 end exponent equals open parentheses 10 close parentheses to the power of log subscript x end subscript invisible function application 83 end exponent comma then x is equal to

    Maths-General
    parallel
    General
    Maths-

    The value of log invisible function application a b minus log invisible function application open vertical bar b close vertical bar equals

    The value of log invisible function application a b minus log invisible function application open vertical bar b close vertical bar equals

    Maths-General
    General
    Maths-

    If alpha comma blank beta comma blank gamma comma blank delta are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k comma then the value of 4 sin invisible function application fraction numerator alpha over denominator 2 end fraction plus 3 sin invisible function application fraction numerator beta over denominator 2 end fraction plus 2 sin invisible function application fraction numerator gamma over denominator 2 end fraction plus sin invisible function application fraction numerator delta over denominator 2 end fraction is equal to

    If alpha comma blank beta comma blank gamma comma blank delta are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k comma then the value of 4 sin invisible function application fraction numerator alpha over denominator 2 end fraction plus 3 sin invisible function application fraction numerator beta over denominator 2 end fraction plus 2 sin invisible function application fraction numerator gamma over denominator 2 end fraction plus sin invisible function application fraction numerator delta over denominator 2 end fraction is equal to

    Maths-General
    General
    Maths-

    The value of x satisfying square root of 3 to the power of negative 4 plus 2 log subscript square root of 5 end subscript invisible function application x end exponent equals 1 divided by 9 is

    The value of x satisfying square root of 3 to the power of negative 4 plus 2 log subscript square root of 5 end subscript invisible function application x end exponent equals 1 divided by 9 is

    Maths-General
    parallel
    General
    Maths-

    Inblank increment A B C, if b to the power of 2 end exponent plus c to the power of 2 end exponent equals 2 a to the power of 2 end exponent comma then value of fraction numerator cot invisible function application A over denominator cot invisible function application B plus cot invisible function application C end fraction is

    Inblank increment A B C, if b to the power of 2 end exponent plus c to the power of 2 end exponent equals 2 a to the power of 2 end exponent comma then value of fraction numerator cot invisible function application A over denominator cot invisible function application B plus cot invisible function application C end fraction is

    Maths-General
    General
    Maths-

    If log subscript 10 end subscript invisible function application open square brackets fraction numerator 1 over denominator 2 to the power of x end exponent plus blank x minus 1 end fraction close square brackets equals x open square brackets log subscript 10 end subscript invisible function application 5 minus 1 close square brackets comma blank t h e n blank x equals

    If log subscript 10 end subscript invisible function application open square brackets fraction numerator 1 over denominator 2 to the power of x end exponent plus blank x minus 1 end fraction close square brackets equals x open square brackets log subscript 10 end subscript invisible function application 5 minus 1 close square brackets comma blank t h e n blank x equals

    Maths-General
    General
    Maths-

    r triangle A B C comma blank R equals 5 divided by 2 blankandblank r equals 1. Let I be the incentre of the triangle and D comma blank E andblank F be the feet of the perpendiculars from I blanktoblank B C comma blank C A blankandblank A B comma respectively. The value of fraction numerator I D cross times I E cross times I F over denominator I A cross times I B cross times I C end fraction blankis equal to

    r triangle A B C comma blank R equals 5 divided by 2 blankandblank r equals 1. Let I be the incentre of the triangle and D comma blank E andblank F be the feet of the perpendiculars from I blanktoblank B C comma blank C A blankandblank A B comma respectively. The value of fraction numerator I D cross times I E cross times I F over denominator I A cross times I B cross times I C end fraction blankis equal to

    Maths-General
    parallel
    General
    Maths-

    any increment A B C comma the value of a open parentheses b to the power of 2 end exponent plus c to the power of 2 end exponent close parentheses cos invisible function application A plus b left parenthesis c to the power of 2 end exponent plus a to the power of 2 end exponent right parenthesis cos invisible function application B plus c left parenthesis a to the power of 2 end exponent plus b to the power of 2 end exponent right parenthesis cos invisible function application C equals

    any increment A B C comma the value of a open parentheses b to the power of 2 end exponent plus c to the power of 2 end exponent close parentheses cos invisible function application A plus b left parenthesis c to the power of 2 end exponent plus a to the power of 2 end exponent right parenthesis cos invisible function application B plus c left parenthesis a to the power of 2 end exponent plus b to the power of 2 end exponent right parenthesis cos invisible function application C equals

    Maths-General
    General
    Maths-

    fraction numerator sin invisible function application x over denominator sin invisible function application y end fraction equals fraction numerator 1 over denominator 2 end fraction comma fraction numerator cos invisible function application x over denominator cos invisible function application y end fraction equals fraction numerator 3 over denominator 2 end fraction blank w h e r e blank x comma blank y blank element of open parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses comma blank t h e n blank t h e blank v a l u e blank o f blank left parenthesis x plus y right parenthesis blank i s blank e q u a l blank t o

    fraction numerator sin invisible function application x over denominator sin invisible function application y end fraction equals fraction numerator 1 over denominator 2 end fraction comma fraction numerator cos invisible function application x over denominator cos invisible function application y end fraction equals fraction numerator 3 over denominator 2 end fraction blank w h e r e blank x comma blank y blank element of open parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses comma blank t h e n blank t h e blank v a l u e blank o f blank left parenthesis x plus y right parenthesis blank i s blank e q u a l blank t o

    Maths-General
    General
    Maths-

    tan invisible function application 3 theta plus tan invisible function application theta equals 2 tan invisible function application 2 theta, thenblank theta is equal to open parentheses n element of Z close parentheses

    tan invisible function application 3 theta plus tan invisible function application theta equals 2 tan invisible function application 2 theta, thenblank theta is equal to open parentheses n element of Z close parentheses

    Maths-General
    parallel
    General
    Maths-

    e number of solutions ofblank not stretchy sum from r equals 1 to 5 of cos invisible function application r x equals 5 in the intervalblank open square brackets 0 comma blank 2 pi close square brackets blankis

    e number of solutions ofblank not stretchy sum from r equals 1 to 5 of cos invisible function application r x equals 5 in the intervalblank open square brackets 0 comma blank 2 pi close square brackets blankis

    Maths-General
    General
    Maths-

    Member of roots of open parentheses 1 minus tan invisible function application theta close parentheses open parentheses 1 plus sin invisible function application 2 theta close parentheses equals 1 plus tan invisible function application theta forblank theta element of open square brackets 0 comma blank 2 pi close square brackets is

    Member of roots of open parentheses 1 minus tan invisible function application theta close parentheses open parentheses 1 plus sin invisible function application 2 theta close parentheses equals 1 plus tan invisible function application theta forblank theta element of open square brackets 0 comma blank 2 pi close square brackets is

    Maths-General
    General
    Maths-

    rblank n element of Z comma blankthe general solution of open parentheses square root of 3 minus 1 close parentheses sin invisible function application theta plus open parentheses square root of 3 plus 1 close parentheses cos invisible function application theta equals 2 blankis open parentheses n element of Z close parentheses

    rblank n element of Z comma blankthe general solution of open parentheses square root of 3 minus 1 close parentheses sin invisible function application theta plus open parentheses square root of 3 plus 1 close parentheses cos invisible function application theta equals 2 blankis open parentheses n element of Z close parentheses

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.