Maths-
General
Easy

Question

Let omega= – fraction numerator 1 over denominator 2 end fraction plus i fraction numerator square root of 3 over denominator 2 end fraction. Then the value of the determinant open vertical bar table row 1 1 1 row 1 cell negative 1 minus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row 1 cell omega to the power of 2 end exponent end cell cell omega to the power of 4 end exponent end cell end table close vertical baris

  1. 3 omega    
  2. 3omega (omega –1)    
  3. 3 omega to the power of 2 end exponent    
  4. 3omega (1 – omega)    

hintHint:

We know that, omega is the cube root of unity.
Hence, 1 plus omega plus omega squared equals 0 and omega to the power of 3 n end exponent equals 1
omega to the power of 3 n plus 1 end exponent equals omega and omega to the power of 3 n plus 2 end exponent equals omega.

The correct answer is: 3omega (omega –1)


    Step by step solution:
    open vertical bar table row 1 1 1 row 1 cell negative 1 minus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row 1 cell omega to the power of 2 end exponent end cell cell omega to the power of 4 end exponent end cell end table close vertical bar
    First we open the determinant,
    equals 1 left square bracket open parentheses negative 1 minus omega squared close parentheses omega to the power of 4negative open parentheses omega squared close parentheses open parentheses omega squared close parentheses right square bracketnegative 1 left square bracket omega to the power of 4 minus omega squared right square bracketplus 1 left square bracket omega squared minus 1 open parentheses negative 1 minus omega squared close parentheses right square bracket
    equals negative omega to the power of 4 minus omega to the power of 6 minus omega to the power of 4 minusomega to the power of 4 plus omega squared plus omega squared plus 1 plus omega squared
    equals negative omega minus 1 minus omega minus omegaplus omega squared plus omega squared plus 1 plus omega squared
    equals negative 3 omega plus 3 omega squared
    equals 3 omega left parenthesis omega minus 1 right parenthesis
    Hence, option(d) is the correct option.

    Related Questions to study

    General
    Maths-

    If omega (not equal to 1) is a cube root of unity, then open vertical bar table row 1 cell 1 plus i plus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row cell 1 minus i end cell cell negative 1 end cell cell omega to the power of 2 end exponent minus 1 end cell row cell negative i end cell cell negative i plus omega minus 1 end cell cell negative 1 end cell end table close vertical barequals

    If omega (not equal to 1) is a cube root of unity, then open vertical bar table row 1 cell 1 plus i plus omega to the power of 2 end exponent end cell cell omega to the power of 2 end exponent end cell row cell 1 minus i end cell cell negative 1 end cell cell omega to the power of 2 end exponent minus 1 end cell row cell negative i end cell cell negative i plus omega minus 1 end cell cell negative 1 end cell end table close vertical barequals

    Maths-General
    General
    Maths-

    Find the value of ‘a’ if the three equations, (a + 1)3x + (a + 2)3 y = (a + 3)3, (a + 1) x + (a + 2)y = (a + 3) & x + y = 1 are consistent.

    Find the value of ‘a’ if the three equations, (a + 1)3x + (a + 2)3 y = (a + 3)3, (a + 1) x + (a + 2)y = (a + 3) & x + y = 1 are consistent.

    Maths-General
    General
    Maths-

    The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is -

    The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is -

    Maths-General
    parallel
    General
    Maths-

    Ifopen vertical bar table row cell 1 plus x end cell x cell x to the power of 2 end exponent end cell row x cell 1 plus x end cell cell x to the power of 2 end exponent end cell row cell x to the power of 2 end exponent end cell x cell 1 plus x end cell end table close vertical bar= ax5 + bx4 + cx3 + dx2 + lambda x + mu be an identity in x, where a, b, c, d, lambda, mu are independent of x. Then the value of lambda is

    Ifopen vertical bar table row cell 1 plus x end cell x cell x to the power of 2 end exponent end cell row x cell 1 plus x end cell cell x to the power of 2 end exponent end cell row cell x to the power of 2 end exponent end cell x cell 1 plus x end cell end table close vertical bar= ax5 + bx4 + cx3 + dx2 + lambda x + mu be an identity in x, where a, b, c, d, lambda, mu are independent of x. Then the value of lambda is

    Maths-General
    General
    Maths-

    If the following equations x + y – 3 = 0(1 + lambda) x + (2 + lambda) y – 8 = 0x – (1 + lambda) y + (2 + lambda) = 0 are consistent then the value of lambdais

    If the following equations x + y – 3 = 0(1 + lambda) x + (2 + lambda) y – 8 = 0x – (1 + lambda) y + (2 + lambda) = 0 are consistent then the value of lambdais

    Maths-General
    General
    Maths-

    If alpha comma beta comma gamma are the roots of x3 – 3x + 2 = 0, then the value of the determinant open vertical bar table row alpha beta gamma row beta gamma alpha row gamma alpha beta end table close vertical bar is equal to

    If alpha comma beta comma gamma are the roots of x3 – 3x + 2 = 0, then the value of the determinant open vertical bar table row alpha beta gamma row beta gamma alpha row gamma alpha beta end table close vertical bar is equal to

    Maths-General
    parallel
    General
    Maths-

    If straight capital deltaABC is a scalene triangle, then the value of open vertical bar table row cell sin invisible function application A end cell cell sin invisible function application B end cell cell sin invisible function application C end cell row cell cos invisible function application A end cell cell cos invisible function application B end cell cell cos invisible function application C end cell row 1 1 1 end table close vertical baris

    If straight capital deltaABC is a scalene triangle, then the value of open vertical bar table row cell sin invisible function application A end cell cell sin invisible function application B end cell cell sin invisible function application C end cell row cell cos invisible function application A end cell cell cos invisible function application B end cell cell cos invisible function application C end cell row 1 1 1 end table close vertical baris

    Maths-General
    General
    Maths-

    Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
    STATEMENT-1: The system of equations has no solution for k not equal to3
    STATEMENT-2: The determinant open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical barnot equal to0, for k not equal to3 

    Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
    STATEMENT-1: The system of equations has no solution for k not equal to3
    STATEMENT-2: The determinant open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical barnot equal to0, for k not equal to3 

    Maths-General
    General
    Maths-

    Suppose, x > 0, y > 0, z > 0 and capital delta (a, b, c) = open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar
    Statement - 1 :capital delta (8, 27, 125) = 0
    Statement - 2 :capital delta open parentheses fraction numerator 1 over denominator 2 end fraction comma fraction numerator 1 over denominator 3 end fraction comma fraction numerator 1 over denominator 5 end fraction close parentheses = 0

    Suppose, x > 0, y > 0, z > 0 and capital delta (a, b, c) = open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar
    Statement - 1 :capital delta (8, 27, 125) = 0
    Statement - 2 :capital delta open parentheses fraction numerator 1 over denominator 2 end fraction comma fraction numerator 1 over denominator 3 end fraction comma fraction numerator 1 over denominator 5 end fraction close parentheses = 0

    Maths-General
    parallel
    General
    Maths-

    If fraction numerator cos space x over denominator cos space y end fraction equals 2 and cos space left parenthesis x minus y right parenthesis equals fraction numerator square root of 3 over denominator 2 end fraction then y=

    If fraction numerator cos space x over denominator cos space y end fraction equals 2 and cos space left parenthesis x minus y right parenthesis equals fraction numerator square root of 3 over denominator 2 end fraction then y=

    Maths-General
    General
    Maths-

    If tan space left parenthesis pi divided by 4 plus theta right parenthesis plus tan space left parenthesis pi divided by 4 minus theta right parenthesis equals a then t a n cubed space left parenthesis pi divided by 4 plus theta right parenthesis plus t a n cubed space left parenthesis pi divided by 4 minus theta right parenthesis equals

    If tan space left parenthesis pi divided by 4 plus theta right parenthesis plus tan space left parenthesis pi divided by 4 minus theta right parenthesis equals a then t a n cubed space left parenthesis pi divided by 4 plus theta right parenthesis plus t a n cubed space left parenthesis pi divided by 4 minus theta right parenthesis equals

    Maths-General
    General
    Maths-

    text  If  end text cos left parenthesis theta minus alpha right parenthesis equals a times cos space left parenthesis theta minus beta right parenthesis equals b then s i n squared space left parenthesis alpha minus beta right parenthesis plus 2 a b c o s space left parenthesis alpha minus beta right parenthesis equals

    text  If  end text cos left parenthesis theta minus alpha right parenthesis equals a times cos space left parenthesis theta minus beta right parenthesis equals b then s i n squared space left parenthesis alpha minus beta right parenthesis plus 2 a b c o s space left parenthesis alpha minus beta right parenthesis equals

    Maths-General
    parallel
    General
    Maths-

    if fraction numerator cos space x minus cos space alpha over denominator cos space x minus cos space beta end fraction equals fraction numerator sin squared begin display style space end style alpha cos space beta over denominator sin squared begin display style space end style beta cos space alpha end fraction text  then  end text cos text end text x equals

    if fraction numerator cos space x minus cos space alpha over denominator cos space x minus cos space beta end fraction equals fraction numerator sin squared begin display style space end style alpha cos space beta over denominator sin squared begin display style space end style beta cos space alpha end fraction text  then  end text cos text end text x equals

    Maths-General
    General
    Maths-

    Assertion: open vertical bar table row cell cos invisible function application left parenthesis theta plus alpha right parenthesis end cell cell cos invisible function application left parenthesis theta plus beta right parenthesis end cell cell cos invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis theta plus alpha right parenthesis end cell cell sin invisible function application left parenthesis theta plus beta right parenthesis end cell cell sin invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis beta minus gamma right parenthesis end cell cell sin invisible function application left parenthesis gamma minus alpha right parenthesis end cell cell sin invisible function application left parenthesis alpha minus beta right parenthesis end cell end table close vertical baris independent of theta
    Reason: If f(theta) = c, then f(theta) is independent of theta.

    Assertion: open vertical bar table row cell cos invisible function application left parenthesis theta plus alpha right parenthesis end cell cell cos invisible function application left parenthesis theta plus beta right parenthesis end cell cell cos invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis theta plus alpha right parenthesis end cell cell sin invisible function application left parenthesis theta plus beta right parenthesis end cell cell sin invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis beta minus gamma right parenthesis end cell cell sin invisible function application left parenthesis gamma minus alpha right parenthesis end cell cell sin invisible function application left parenthesis alpha minus beta right parenthesis end cell end table close vertical baris independent of theta
    Reason: If f(theta) = c, then f(theta) is independent of theta.

    Maths-General
    General
    Maths-

    Statement-1 : The function f(x) = |x3| is differentiable at x = 0
    Statement-2 : at x = 0, f to the power of straight prime(x) = 0

    Statement-1 : The function f(x) = |x3| is differentiable at x = 0
    Statement-2 : at x = 0, f to the power of straight prime(x) = 0

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.