Maths-
General
Easy

Question

Statement 1:There are infinite geometric progressions for which 27, 8 and 12 are three of its terms (not necessarily consecutive)
Statement 2:Given terms are integers

  1. Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1  
  2. Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1  
  3. Statement 1 is True, Statement 2 is False  
  4. Statement 1 is False, Statement 2 is True  

The correct answer is: Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1


    Let, if possible, 8 be the first term and 12 and 27 be n to the power of t h end exponent and n to the power of t h end exponent terms, respectively. Then,
    12 equals a r to the power of m minus 1 end exponent equals 8 r to the power of m minus 1 end exponent comma blank 27 equals 8 r to the power of n minus 1 end exponent
    rightwards double arrow fraction numerator 3 over denominator 2 end fraction equals r to the power of m minus 1 end exponent comma blank open parentheses fraction numerator 3 over denominator 2 end fraction close parentheses to the power of 3 end exponent equals r to the power of n minus 1 end exponent equals r to the power of 3 left parenthesis m minus 1 right parenthesis end exponent
    rightwards double arrow n minus 1 equals 3 m minus 3 or 3 m plus n plus 2
    rightwards double arrow fraction numerator m over denominator 1 end fraction equals fraction numerator n plus 2 over denominator 3 end fraction equals k (say)
    therefore m equals k comma blank n equals 3 k minus 2
    By giving k different values, we get the integral value of m and n. Hence there can be infinite number of G.P.’s whose any the three terms will be 8, 12, 27 (not consecutive). Obviously, statement 2 is not a correct explanation of statement 1

    Related Questions to study

    General
    Maths-

    Statement 1:Sum of the series 1 to the power of 3 end exponent minus 2 to the power of 3 end exponent plus 3 to the power of 3 end exponent minus 4 to the power of 3 end exponent plus horizontal ellipsis plus 11 to the power of 3 end exponent equals 378
    Statement 2:For any odd integer n greater or equal than 1 comma blank n to the power of 3 end exponent minus open parentheses n minus 1 close parentheses to the power of 3 end exponent plus horizontal ellipsis plus open parentheses negative 1 close parentheses to the power of n minus 1 end exponent blank 1 to the power of 3 end exponent equals fraction numerator 1 over denominator 4 end fraction open parentheses 2 n minus 1 close parentheses open parentheses n plus 1 close parentheses to the power of 2 end exponent

    Statement 1:Sum of the series 1 to the power of 3 end exponent minus 2 to the power of 3 end exponent plus 3 to the power of 3 end exponent minus 4 to the power of 3 end exponent plus horizontal ellipsis plus 11 to the power of 3 end exponent equals 378
    Statement 2:For any odd integer n greater or equal than 1 comma blank n to the power of 3 end exponent minus open parentheses n minus 1 close parentheses to the power of 3 end exponent plus horizontal ellipsis plus open parentheses negative 1 close parentheses to the power of n minus 1 end exponent blank 1 to the power of 3 end exponent equals fraction numerator 1 over denominator 4 end fraction open parentheses 2 n minus 1 close parentheses open parentheses n plus 1 close parentheses to the power of 2 end exponent

    Maths-General
    General
    Maths-

    Statement 1:In a G.P. if the open parentheses m plus n close parentheses to the power of t h end exponent term be p and open parentheses m minus n close parentheses to the power of t h end exponent term be q, then its m to the power of t h end exponent term is square root of p q end root
    Statement 2:T subscript m plus n end subscript comma blank T subscript m end subscript comma blank T subscript m minus n end subscript are in G.P.

    Statement 1:In a G.P. if the open parentheses m plus n close parentheses to the power of t h end exponent term be p and open parentheses m minus n close parentheses to the power of t h end exponent term be q, then its m to the power of t h end exponent term is square root of p q end root
    Statement 2:T subscript m plus n end subscript comma blank T subscript m end subscript comma blank T subscript m minus n end subscript are in G.P.

    Maths-General
    General
    Maths-

    Statement 1:If open vertical bar x minus 1 close vertical bar comma blank vertical line x minus 3 vertical line are first three terms of an AP, then its sixth term is 7< third terms.
    Statement 2:a comma blank a plus d comma blank a plus 2 d comma... are in AP open parentheses d not equal to 0 close parentheses comma then sixth term is open parentheses a plus 5 d close parentheses.

    Statement 1:If open vertical bar x minus 1 close vertical bar comma blank vertical line x minus 3 vertical line are first three terms of an AP, then its sixth term is 7< third terms.
    Statement 2:a comma blank a plus d comma blank a plus 2 d comma... are in AP open parentheses d not equal to 0 close parentheses comma then sixth term is open parentheses a plus 5 d close parentheses.

    Maths-General
    parallel
    General
    Maths-

    Statement 1:If sum f n terms of a series 2 n to the power of 2 end exponent plus 3 n plus 1 comma then series is an AP.
    Statement 2:Sum of n terms of an AP is always of the form p n to the power of 2 end exponent plus q n.

    Statement 1:If sum f n terms of a series 2 n to the power of 2 end exponent plus 3 n plus 1 comma then series is an AP.
    Statement 2:Sum of n terms of an AP is always of the form p n to the power of 2 end exponent plus q n.

    Maths-General
    General
    Maths-

    Let a comma blank b comma blank c be three positive real numbers which are in HP.
    Statement 1:fraction numerator a plus b over denominator 2 a minus b end fraction plus fraction numerator c plus b over denominator 2 c minus b end fraction greater or equal than 4.
    Statement 2:If x greater than 0 comma then x plus fraction numerator 1 over denominator x end fraction greater or equal than 4.

    Let a comma blank b comma blank c be three positive real numbers which are in HP.
    Statement 1:fraction numerator a plus b over denominator 2 a minus b end fraction plus fraction numerator c plus b over denominator 2 c minus b end fraction greater or equal than 4.
    Statement 2:If x greater than 0 comma then x plus fraction numerator 1 over denominator x end fraction greater or equal than 4.

    Maths-General
    General
    Maths-

    Statement 1:If x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 25 z to the power of 2 end exponent equals x y z open parentheses fraction numerator 15 over denominator x end fraction plus fraction numerator 5 over denominator y end fraction plus fraction numerator 3 over denominator z end fraction close parentheses, then x comma blank y comma blank z are in H.P.
    Statement 2:If a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0, then a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis a subscript n end subscript equals 0

    Statement 1:If x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 25 z to the power of 2 end exponent equals x y z open parentheses fraction numerator 15 over denominator x end fraction plus fraction numerator 5 over denominator y end fraction plus fraction numerator 3 over denominator z end fraction close parentheses, then x comma blank y comma blank z are in H.P.
    Statement 2:If a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0, then a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis a subscript n end subscript equals 0

    Maths-General
    parallel
    General
    Maths-

    The harmonic mean of the roots of the equation open parentheses 5 plus square root of 2 close parentheses x to the power of 2 end exponent minus open parentheses 4 plus square root of 5 close parentheses x plus 8 plus 2 square root of 5 equals 0 is

    The harmonic mean of the roots of the equation open parentheses 5 plus square root of 2 close parentheses x to the power of 2 end exponent minus open parentheses 4 plus square root of 5 close parentheses x plus 8 plus 2 square root of 5 equals 0 is

    Maths-General
    General
    Maths-

    The sum to 50 terms of the series fraction numerator 3 over denominator 1 to the power of 2 end exponent end fraction plus fraction numerator 5 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent end fraction plus fraction numerator 7 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent plus 3 to the power of 2 end exponent end fraction plus horizontal ellipsis is

    The sum to 50 terms of the series fraction numerator 3 over denominator 1 to the power of 2 end exponent end fraction plus fraction numerator 5 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent end fraction plus fraction numerator 7 over denominator 1 to the power of 2 end exponent plus 2 to the power of 2 end exponent plus 3 to the power of 2 end exponent end fraction plus horizontal ellipsis is

    Maths-General
    General
    Maths-

    If a comma blank x and b are in A.P., a comma blank y comma and b are in G.P. and a comma blank z comma blank b are in H.P. such that x equals 9 z and a greater than 0 comma blank b greater than 0, then

    If a comma blank x and b are in A.P., a comma blank y comma and b are in G.P. and a comma blank z comma blank b are in H.P. such that x equals 9 z and a greater than 0 comma blank b greater than 0, then

    Maths-General
    parallel
    General
    Maths-

    Let a subscript 1 end subscript comma a subscript 2 end subscript comma horizontal ellipsis comma a subscript 10 end subscript be in A.P. and h subscript 1 end subscript comma h subscript 2 end subscript comma horizontal ellipsis comma h subscript 10 end subscript be in H.P. If a subscript 1 end subscript equals h subscript 1 end subscript equals 2 and a subscript 10 end subscript equals h subscript 10 end subscript equals 3, then a subscript 4 end subscript h subscript 7 end subscript is

    Let a subscript 1 end subscript comma a subscript 2 end subscript comma horizontal ellipsis comma a subscript 10 end subscript be in A.P. and h subscript 1 end subscript comma h subscript 2 end subscript comma horizontal ellipsis comma h subscript 10 end subscript be in H.P. If a subscript 1 end subscript equals h subscript 1 end subscript equals 2 and a subscript 10 end subscript equals h subscript 10 end subscript equals 3, then a subscript 4 end subscript h subscript 7 end subscript is

    Maths-General
    General
    Maths-

    If x comma blank y comma blank z are real and 4 x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 16 z to the power of 2 end exponent minus 6 x y minus 12 y z minus 8 z x equals 0, then x comma blank y comma blank z are in

    If x comma blank y comma blank z are real and 4 x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 16 z to the power of 2 end exponent minus 6 x y minus 12 y z minus 8 z x equals 0, then x comma blank y comma blank z are in

    Maths-General
    General
    Maths-

    Let alpha comma blank beta element of R. If alpha comma blank beta to the power of 2 end exponent be the roots of quadratic equation x to the power of 2 end exponent minus p x plus 1 equals 0 and alpha to the power of 2 end exponent comma beta be the roots of quadratic equation x to the power of 2 end exponent minus q x plus 8 equals 0, then the value of ‘r’ if fraction numerator r over denominator 8 end fraction be arithmetic mean of p and q is

    Let alpha comma blank beta element of R. If alpha comma blank beta to the power of 2 end exponent be the roots of quadratic equation x to the power of 2 end exponent minus p x plus 1 equals 0 and alpha to the power of 2 end exponent comma beta be the roots of quadratic equation x to the power of 2 end exponent minus q x plus 8 equals 0, then the value of ‘r’ if fraction numerator r over denominator 8 end fraction be arithmetic mean of p and q is

    Maths-General
    parallel
    General
    Maths-

    If a comma fraction numerator 1 over denominator b end fraction comma blank c and fraction numerator 1 over denominator p end fraction comma blank q comma fraction numerator 1 over denominator r end fraction form two arithmetic progressions of the same common difference, then a comma blank q comma c are in A.P. if

    If a comma fraction numerator 1 over denominator b end fraction comma blank c and fraction numerator 1 over denominator p end fraction comma blank q comma fraction numerator 1 over denominator r end fraction form two arithmetic progressions of the same common difference, then a comma blank q comma c are in A.P. if

    Maths-General
    General
    Maths-

    If open vertical bar a close vertical bar less than 1 and open vertical bar b close vertical bar less than 1, then the sum of the series 1 plus open parentheses 1 plus a close parentheses b plus open parentheses 1 plus a plus a to the power of 2 end exponent close parentheses b to the power of 2 end exponent plus open parentheses 1 plus a plus a to the power of 2 end exponent plus a to the power of 3 end exponent close parentheses b to the power of 3 end exponent plus horizontal ellipsis is

    If open vertical bar a close vertical bar less than 1 and open vertical bar b close vertical bar less than 1, then the sum of the series 1 plus open parentheses 1 plus a close parentheses b plus open parentheses 1 plus a plus a to the power of 2 end exponent close parentheses b to the power of 2 end exponent plus open parentheses 1 plus a plus a to the power of 2 end exponent plus a to the power of 3 end exponent close parentheses b to the power of 3 end exponent plus horizontal ellipsis is

    Maths-General
    General
    Maths-

    The value of not stretchy sum from r equals 0 to n of open parentheses a plus r plus a r close parentheses open parentheses negative a close parentheses to the power of r end exponent is equal to

    The value of not stretchy sum from r equals 0 to n of open parentheses a plus r plus a r close parentheses open parentheses negative a close parentheses to the power of r end exponent is equal to

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.