Maths-
General
Easy

Question

The radius of the circle passing through the centre or the in-circle of triangle A B Cand through the end points of BC is given by

  1. fraction numerator a over denominator 2 end fraction c o s invisible function application A    
  2. fraction numerator a over denominator 2 end fraction s e c invisible function application A divided by 2    
  3. fraction numerator a over denominator 2 end fraction s i n invisible function application A    
  4. a s e c invisible function application A divided by 2    

The correct answer is: fraction numerator a over denominator 2 end fraction s e c invisible function application A divided by 2


    because angle B I C equals 180 to the power of ring operator end exponent minus open parentheses fraction numerator B over denominator 2 end fraction plus fraction numerator C over denominator 2 end fraction close parentheses
    S o angle B O C equals 2 open parentheses 180 to the power of ring operator end exponent minus open parentheses fraction numerator B over denominator 2 end fraction plus fraction numerator C over denominator 2 end fraction close parentheses close parentheses
    equals 360 to the power of ring operator end exponent minus left parenthesis B plus C right parenthesis
    open curly brackets therefore A plus B plus C equals 180 to the power of ring operator end exponent close parentheses
    equals pi minus A
    l n invisible function application capital delta O B C
    c o s invisible function application left parenthesis pi minus A right parenthesis equals fraction numerator R to the power of 2 end exponent plus R to the power of 2 end exponent minus a to the power of 2 end exponent over denominator 2. R R R end fraction
    rightwards double arrow a to the power of 2 end exponent equals 2 R to the power of 2 end exponent left parenthesis 1 plus c o s invisible function application A right parenthesis
    R equals fraction numerator a over denominator square root of 4 c o s to the power of 2 end exponent invisible function application fraction numerator 2 A over denominator 2 end fraction end root end fraction equals fraction numerator a over denominator 2 end fraction s e c invisible function application fraction numerator A over denominator 2 end fraction

    Related Questions to study

    General
    Chemistry-

    CH3COOH is reacted with H C identical to C H in presence of Hg2+ , the product is:

    CH3COOH is reacted with H C identical to C H in presence of Hg2+ , the product is:

    Chemistry-General
    General
    Maths-

    If fraction numerator 1 over denominator a end fraction comma fraction numerator 1 over denominator b end fraction comma fraction numerator 1 over denominator c end fraction are in A.P., where a, b, c are sides of the triangle ABC, then s i n to the power of 2 end exponent invisible function application fraction numerator A over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator B over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator C over denominator 2 end fraction are in

    If fraction numerator 1 over denominator a end fraction comma fraction numerator 1 over denominator b end fraction comma fraction numerator 1 over denominator c end fraction are in A.P., where a, b, c are sides of the triangle ABC, then s i n to the power of 2 end exponent invisible function application fraction numerator A over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator B over denominator 2 end fraction comma s i n to the power of 2 end exponent invisible function application fraction numerator C over denominator 2 end fraction are in

    Maths-General
    General
    Maths-

    Statement1: If a line intersects a hyperbola at (2, 6) and (4, 4) and one of the asymptotes at (1, 2) then the centre of the hyperbola is (1, 2) because
    Statement2: Mid point of the chord intercepted by hyperbola is same as midpoint of the chord intercepted between
    asymptotes

    Statement1: If a line intersects a hyperbola at (2, 6) and (4, 4) and one of the asymptotes at (1, 2) then the centre of the hyperbola is (1, 2) because
    Statement2: Mid point of the chord intercepted by hyperbola is same as midpoint of the chord intercepted between
    asymptotes

    Maths-General
    parallel
    General
    Maths-

    lf not stretchy integral subscript blank superscript blank left parenthesis blank s i n blank 2 x plus blank c o s blank 2 x right parenthesis d x equals fraction numerator 1 over denominator square root of 2 end fraction blank s i n blank left parenthesis 2 x minus c right parenthesis plus 0, then the value of a and c is

    lf not stretchy integral subscript blank superscript blank left parenthesis blank s i n blank 2 x plus blank c o s blank 2 x right parenthesis d x equals fraction numerator 1 over denominator square root of 2 end fraction blank s i n blank left parenthesis 2 x minus c right parenthesis plus 0, then the value of a and c is

    Maths-General
    General
    Maths-

    lf integral subscript blank superscript blank fraction numerator left parenthesis x squared minus 1 right parenthesis over denominator left parenthesis x to the power of 4 plus 3 x squared plus 1 right parenthesis t a n to the power of negative 1 end exponent left parenthesis fraction numerator x squared plus right square bracket over denominator chi end fraction right parenthesis end fraction d x equals k blank l o g blank vertical line t a n to the power of negative 1 end exponent fraction numerator x squared plus 1 over denominator chi end fraction vertical line plus c comma then k is equal to

    lf integral subscript blank superscript blank fraction numerator left parenthesis x squared minus 1 right parenthesis over denominator left parenthesis x to the power of 4 plus 3 x squared plus 1 right parenthesis t a n to the power of negative 1 end exponent left parenthesis fraction numerator x squared plus right square bracket over denominator chi end fraction right parenthesis end fraction d x equals k blank l o g blank vertical line t a n to the power of negative 1 end exponent fraction numerator x squared plus 1 over denominator chi end fraction vertical line plus c comma then k is equal to

    Maths-General
    General
    Maths-

    lf integral subscript blank superscript blank fraction numerator d x over denominator chi square root of 1 minus x cubed end root end fraction equals a blank l o g blank vertical line fraction numerator square root of 1 minus x cubed end root minus 1 over denominator square root of 1 minus x cubed end root plus 1 end fraction vertical line plus c, then

    lf integral subscript blank superscript blank fraction numerator d x over denominator chi square root of 1 minus x cubed end root end fraction equals a blank l o g blank vertical line fraction numerator square root of 1 minus x cubed end root minus 1 over denominator square root of 1 minus x cubed end root plus 1 end fraction vertical line plus c, then

    Maths-General
    parallel
    General
    Maths-

    The gradient of the curve y=f(x) at P is slope of the tangent line at P i.e.,

    PM = length of the tangent
    PR = length of the normal to the curve y=f(x)
    Area of triangle formed by the positive x-axis and the normal and the tangent to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4 at left parenthesis 1 comma square root of 3 right parenthesis is

    The gradient of the curve y=f(x) at P is slope of the tangent line at P i.e.,

    PM = length of the tangent
    PR = length of the normal to the curve y=f(x)
    Area of triangle formed by the positive x-axis and the normal and the tangent to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4 at left parenthesis 1 comma square root of 3 right parenthesis is

    Maths-General
    General
    Chemistry-

    The partial pressures of CH30H, CO and H2 in the equilibrium mixture for the reaction, C O plus 2 H subscript 2 end subscript rightwards harpoon over leftwards harpoon C H subscript 3 end subscript O H at 427degreeC are 2.0, 1.0 and 0.1 atm respectively The value of Kp for the decomposition of CH30H into CO and H2 is:

    The partial pressures of CH30H, CO and H2 in the equilibrium mixture for the reaction, C O plus 2 H subscript 2 end subscript rightwards harpoon over leftwards harpoon C H subscript 3 end subscript O H at 427degreeC are 2.0, 1.0 and 0.1 atm respectively The value of Kp for the decomposition of CH30H into CO and H2 is:

    Chemistry-General
    General
    Chemistry-

    At 500 K, the equilibrium constant for reaction c is C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript 0.6At the same temperature, the equilibrium constant for the reaction  C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript, will be:

    At 500 K, the equilibrium constant for reaction c is C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript 0.6At the same temperature, the equilibrium constant for the reaction  C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript, will be:

    Chemistry-General
    parallel
    General
    Chemistry-

    For the reaction,blank 2 N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon 2 N O left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis K subscript c end subscript equals 1.8 cross times 10 to the power of negative 6 end exponentKC 1.8 cross times 10-6 at 185degreeC The value of Kc at 185degreeC for the reaction; N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon fraction numerator 1 over denominator 2 end fraction N subscript 2 end subscript left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis

    For the reaction,blank 2 N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon 2 N O left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis K subscript c end subscript equals 1.8 cross times 10 to the power of negative 6 end exponentKC 1.8 cross times 10-6 at 185degreeC The value of Kc at 185degreeC for the reaction; N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon fraction numerator 1 over denominator 2 end fraction N subscript 2 end subscript left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis

    Chemistry-General
    General
    Maths-

    In a geometric progression, if the ratio of the sum of first 5 terms to the sum of their reciprocals is 49, and the sum of the first and third terms is 35, then the first term of this geometric progression is

    In a geometric progression, if the ratio of the sum of first 5 terms to the sum of their reciprocals is 49, and the sum of the first and third terms is 35, then the first term of this geometric progression is

    Maths-General
    General
    Maths-

    Statements-1: stretchy integral subscript 0 end subscript superscript n x plus t end superscript   vertical line s i n invisible function application x vertical line d x= (2n + (a) cost (0 ttheta)
    Statements-2: stretchy integral subscript a end subscript superscript b end superscript   f left parenthesis x right parenthesis d x equals stretchy integral subscript a end subscript superscript c end superscript   f left parenthesis x right parenthesis d x plus stretchy integral subscript c end subscript superscript b end superscript   f left parenthesis x right parenthesis d x
    and stretchy integral subscript 0 end subscript superscript m end superscript   f left parenthesis x right parenthesis d x equals n stretchy integral subscript 0 end subscript superscript a end superscript   f left parenthesis x right parenthesis d x if f(a + x) = f(x)

    Statements-1: stretchy integral subscript 0 end subscript superscript n x plus t end superscript   vertical line s i n invisible function application x vertical line d x= (2n + (a) cost (0 ttheta)
    Statements-2: stretchy integral subscript a end subscript superscript b end superscript   f left parenthesis x right parenthesis d x equals stretchy integral subscript a end subscript superscript c end superscript   f left parenthesis x right parenthesis d x plus stretchy integral subscript c end subscript superscript b end superscript   f left parenthesis x right parenthesis d x
    and stretchy integral subscript 0 end subscript superscript m end superscript   f left parenthesis x right parenthesis d x equals n stretchy integral subscript 0 end subscript superscript a end superscript   f left parenthesis x right parenthesis d x if f(a + x) = f(x)

    Maths-General
    parallel
    General
    Maths-

    If x enotes the rounded off value of x left parenthesis 3.4 equals 3 comma 3.5 equals 4 comma 3.8 equals text  4etc  end text right parenthesis and the area bounded by the two curves defined by y = vertical line x minus x with not stretchy bar on top vertical line and y equals lambda sin invisible function application left parenthesis pi x right parenthesis comma lambda 1. In the interval 0 x 1 is equal to 2 square units, The value of the constant is

    If x enotes the rounded off value of x left parenthesis 3.4 equals 3 comma 3.5 equals 4 comma 3.8 equals text  4etc  end text right parenthesis and the area bounded by the two curves defined by y = vertical line x minus x with not stretchy bar on top vertical line and y equals lambda sin invisible function application left parenthesis pi x right parenthesis comma lambda 1. In the interval 0 x 1 is equal to 2 square units, The value of the constant is

    Maths-General
    General
    Maths-

    Statement-1: f colon R rightwards arrow R comma f left parenthesis x right parenthesis equals s i n invisible function application x plus xthen stretchy integral subscript 0 end subscript superscript pi end superscript   open parentheses f to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses d x equals fraction numerator pi to the power of 2 end exponent minus 4 over denominator 2 end fraction
    Statement-2 : y equals f to the power of negative 1 end exponent left parenthesis x right parenthesisis the reflection of y equals f left parenthesis x right parenthesis text  w.r.t.  end text to the power of ´ end exponent x to the power of ´ end exponent

    Statement-1: f colon R rightwards arrow R comma f left parenthesis x right parenthesis equals s i n invisible function application x plus xthen stretchy integral subscript 0 end subscript superscript pi end superscript   open parentheses f to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses d x equals fraction numerator pi to the power of 2 end exponent minus 4 over denominator 2 end fraction
    Statement-2 : y equals f to the power of negative 1 end exponent left parenthesis x right parenthesisis the reflection of y equals f left parenthesis x right parenthesis text  w.r.t.  end text to the power of ´ end exponent x to the power of ´ end exponent

    Maths-General
    General
    Maths-

    If stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application x d x equals fraction numerator pi over denominator 4 end fraction minus fraction numerator 1 over denominator 2 end fraction ln 2 then the value of the definite integral stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application open parentheses 1 minus x plus x to the power of 2 end exponent close parentheses d x equals

    If stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application x d x equals fraction numerator pi over denominator 4 end fraction minus fraction numerator 1 over denominator 2 end fraction ln 2 then the value of the definite integral stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application open parentheses 1 minus x plus x to the power of 2 end exponent close parentheses d x equals

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.