Maths-
General
Easy

Question

open curly brackets open x element of R divided by l o g open square brackets open parentheses 1.6 close parentheses to the power of 1 minus x 2 end exponent minus open parentheses 0.625 close parentheses to the power of 6 open parentheses 1 plus x close parentheses end exponent close square brackets element of R close curly brackets equals close

  1. open parentheses negative infinity comma negative 1 close parentheses union open parentheses 7 comma infinity close parentheses    
  2. (-1,5)    
  3. (1,7)    
  4. (-1,7)    

The correct answer is: (-1,7)

Related Questions to study

General
Maths-

The extreme values of 4 c o s invisible function application open parentheses x to the power of 2 end exponent close parentheses c o s invisible function application open parentheses fraction numerator pi over denominator 3 end fraction plus x to the power of 2 end exponent close parentheses c o s invisible function application open parentheses fraction numerator pi over denominator 3 end fraction minus x to the power of 2 end exponent close parentheses over R are

The extreme values of 4 c o s invisible function application open parentheses x to the power of 2 end exponent close parentheses c o s invisible function application open parentheses fraction numerator pi over denominator 3 end fraction plus x to the power of 2 end exponent close parentheses c o s invisible function application open parentheses fraction numerator pi over denominator 3 end fraction minus x to the power of 2 end exponent close parentheses over R are

Maths-General
General
Maths-

The period of open parentheses t a n invisible function application theta minus fraction numerator 1 over denominator 3 end fraction t a n to the power of 3 end exponent invisible function application theta close parentheses open parentheses fraction numerator 1 over denominator 3 end fraction minus t a n to the power of 2 end exponent invisible function application theta close parentheses to the power of negative 1 end exponent, where t a n to the power of 2 end exponent invisible function application theta not equal to fraction numerator 1 over denominator 3 end fraction is

The period of open parentheses t a n invisible function application theta minus fraction numerator 1 over denominator 3 end fraction t a n to the power of 3 end exponent invisible function application theta close parentheses open parentheses fraction numerator 1 over denominator 3 end fraction minus t a n to the power of 2 end exponent invisible function application theta close parentheses to the power of negative 1 end exponent, where t a n to the power of 2 end exponent invisible function application theta not equal to fraction numerator 1 over denominator 3 end fraction is

Maths-General
General
Maths-

The minimum value of 27 t a n to the power of 2 end exponent invisible function application theta plus 3 c o t to the power of 2 end exponent invisible function application theta is

The minimum value of 27 t a n to the power of 2 end exponent invisible function application theta plus 3 c o t to the power of 2 end exponent invisible function application theta is

Maths-General
parallel
General
Maths-

The maximum value of open parentheses c o s invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o s invisible function application alpha subscript 2 end subscript close parentheses open parentheses c o s invisible function application alpha subscript n end subscript close parentheses, under the restrictions 0 less or equal than alpha subscript 1 end subscript comma alpha subscript 2 end subscript comma horizontal ellipsis. alpha subscript n end subscript less or equal than fraction numerator pi over denominator 2 end fraction and open parentheses c o t invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o t invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses c o t invisible function application alpha subscript n end subscript close parentheses equals 1

The maximum value of open parentheses c o s invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o s invisible function application alpha subscript 2 end subscript close parentheses open parentheses c o s invisible function application alpha subscript n end subscript close parentheses, under the restrictions 0 less or equal than alpha subscript 1 end subscript comma alpha subscript 2 end subscript comma horizontal ellipsis. alpha subscript n end subscript less or equal than fraction numerator pi over denominator 2 end fraction and open parentheses c o t invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o t invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis open parentheses c o t invisible function application alpha subscript n end subscript close parentheses equals 1

Maths-General
General
Maths-

The maximum value of s i n invisible function application left parenthesis c o s invisible function application x right parenthesis is equal to

The maximum value of s i n invisible function application left parenthesis c o s invisible function application x right parenthesis is equal to

Maths-General
General
Maths-

Range of c o s to the power of 4 end exponent invisible function application x minus s i n to the power of 4 end exponent invisible function application x is

Range of c o s to the power of 4 end exponent invisible function application x minus s i n to the power of 4 end exponent invisible function application x is

Maths-General
parallel
General
Maths-

The maximum value of 16 c o s to the power of 5 end exponent invisible function application theta minus 20 c o s to the power of 3 end exponent invisible function application theta plus 5 c o s invisible function application theta is

The maximum value of 16 c o s to the power of 5 end exponent invisible function application theta minus 20 c o s to the power of 3 end exponent invisible function application theta plus 5 c o s invisible function application theta is

Maths-General
General
Maths-

The range of c o s invisible function application x plus 4 square root of 2 s i n invisible function application open parentheses x minus fraction numerator pi over denominator 4 end fraction close parentheses plus 6 is

The range of c o s invisible function application x plus 4 square root of 2 s i n invisible function application open parentheses x minus fraction numerator pi over denominator 4 end fraction close parentheses plus 6 is

Maths-General
General
Maths-

Period of s i n invisible function application left parenthesis s i n invisible function application x right parenthesis plus s i n invisible function application left parenthesis c o s invisible function application x right parenthesis is

Period of s i n invisible function application left parenthesis s i n invisible function application x right parenthesis plus s i n invisible function application left parenthesis c o s invisible function application x right parenthesis is

Maths-General
parallel
General
Maths-

Period of t a n invisible function application open parentheses x plus 8 x plus 27 x plus midline horizontal ellipsis plus n to the power of 3 end exponent x close parentheses is

Period of t a n invisible function application open parentheses x plus 8 x plus 27 x plus midline horizontal ellipsis plus n to the power of 3 end exponent x close parentheses is

Maths-General
General
Maths-

A equals s i n to the power of 8 end exponent invisible function application theta plus c o s to the power of 14 end exponent invisible function application theta then for all values of theta

A equals s i n to the power of 8 end exponent invisible function application theta plus c o s to the power of 14 end exponent invisible function application theta then for all values of theta

Maths-General
General
Maths-

Period of s i n invisible function application left parenthesis x plus 2 x plus 3 x plus midline horizontal ellipsis plus n x right parenthesis is

Period of s i n invisible function application left parenthesis x plus 2 x plus 3 x plus midline horizontal ellipsis plus n x right parenthesis is

Maths-General
parallel
General
Maths-

The function f colon R rightwards arrow R g colon R rightwards arrow R are defined as follows f left parenthesis x right parenthesis equals 0 left parenthesis x is rational right parenthesis comma g left parenthesis x right parenthesis equals negative 1 left parenthesis x is rational right parenthesis equals 1 left parenthesis x is irrational equals 0 ( x is irrational right parenthesis then fog left parenthesis pi right parenthesis plus g o f invisible function application left parenthesis e right parenthesis

The function f colon R rightwards arrow R g colon R rightwards arrow R are defined as follows f left parenthesis x right parenthesis equals 0 left parenthesis x is rational right parenthesis comma g left parenthesis x right parenthesis equals negative 1 left parenthesis x is rational right parenthesis equals 1 left parenthesis x is irrational equals 0 ( x is irrational right parenthesis then fog left parenthesis pi right parenthesis plus g o f invisible function application left parenthesis e right parenthesis

Maths-General
General
Maths-

f colon R rightwards arrow R and g colon R rightwards arrow R are given by f left parenthesis x right parenthesis equals vertical line x vertical line and g left parenthesis x right parenthesis equals left square bracket x right square bracket for each x element of R then x element of R colon g left square bracket f left parenthesis x right parenthesis right square bracket less or equal than f left square bracket g left parenthesis x right parenthesis right square bracket

f colon R rightwards arrow R and g colon R rightwards arrow R are given by f left parenthesis x right parenthesis equals vertical line x vertical line and g left parenthesis x right parenthesis equals left square bracket x right square bracket for each x element of R then x element of R colon g left square bracket f left parenthesis x right parenthesis right square bracket less or equal than f left square bracket g left parenthesis x right parenthesis right square bracket

Maths-General
General
Maths-

If Q denotes the set of all rational numbers and f open parentheses fraction numerator p over denominator q end fraction close parentheses equals square root of p to the power of 2 end exponent minus q to the power of 2 end exponent end root for any fraction numerator p over denominator q end fraction element of Q, then observe the following statements
I) f open parentheses fraction numerator p over denominator q end fraction close parentheses is real for each fraction numerator p over denominator q end fraction element of Q
II) f open parentheses fraction numerator p over denominator q end fraction close parentheses is a complex number for each fraction numerator p over denominator q end fraction element of Q Which of the following is correct?

If Q denotes the set of all rational numbers and f open parentheses fraction numerator p over denominator q end fraction close parentheses equals square root of p to the power of 2 end exponent minus q to the power of 2 end exponent end root for any fraction numerator p over denominator q end fraction element of Q, then observe the following statements
I) f open parentheses fraction numerator p over denominator q end fraction close parentheses is real for each fraction numerator p over denominator q end fraction element of Q
II) f open parentheses fraction numerator p over denominator q end fraction close parentheses is a complex number for each fraction numerator p over denominator q end fraction element of Q Which of the following is correct?

Maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.