Physics-
General
Easy
Question
In the triangular sheet given PQ = QR = l. If M is the mass of the sheet. What is the moment of inertial about PR
The correct answer is:
Related Questions to study
Physics-
The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is
The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is
Physics-General
Physics-
Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.
Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.
Physics-General
Physics-
Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:
Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:
Physics-General
Physics-
Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB
Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB
Physics-General
Maths-
Maths-General
Physics-
If the inclined is smooth & rod still does not slip on roller then acceleration of roller is
If the inclined is smooth & rod still does not slip on roller then acceleration of roller is
Physics-General
Physics-
A capacitor having capacitance ‘C’ is charged by a battery having e.m.f. 2V (Battery is disconnected after charging). Now this charged capacitor is connected to another battery having e.m.f. V. The positive plate of capacitor is connected with –ve terminal of battery & vice-versa. The amount of heat produced after connecting it with battery.
A capacitor having capacitance ‘C’ is charged by a battery having e.m.f. 2V (Battery is disconnected after charging). Now this charged capacitor is connected to another battery having e.m.f. V. The positive plate of capacitor is connected with –ve terminal of battery & vice-versa. The amount of heat produced after connecting it with battery.
Physics-General
Maths-
Maths-General
Physics-
A modulating signal is a square wave as shown in the figure
The carrier wave is given by The modulation index is
A modulating signal is a square wave as shown in the figure
The carrier wave is given by The modulation index is
Physics-General
Physics-
A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is The distance of the centre of mass of the system from the mass A is
A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is The distance of the centre of mass of the system from the mass A is
Physics-General
Physics-
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The maximum height h attained by the particle is
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The maximum height h attained by the particle is
Physics-General
Physics-
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The final velocity of the wedge v2 is
A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.
The final velocity of the wedge v2 is
Physics-General
Physics-
A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is 0 when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord after it has turned through an angle is
A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is 0 when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord after it has turned through an angle is
Physics-General
Physics-
A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?
A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?
Physics-General
Physics-
Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)
In above problem, the value(s) of F for which M and m are stationary with respect to M0</sub
Physics-General